\qquad
\qquad Date: \qquad
I. The graph of a function f is shown below.

Answer the following questions about function f .

1. $f(-5)=$
2. $f(2)=$
3. $f(4)=$
4. $\lim _{x \rightarrow-7} f(x)=$
5. $\lim _{x \rightarrow-5} f(x)=$
6. $\lim _{x \rightarrow 2} f(x)=$
7. $\lim _{x \rightarrow 4} f(x)=$
8. $\lim _{x \rightarrow 0} f(x)=$
9. $\lim _{x \rightarrow 0^{-}} f(x)=$
10. $\lim _{x \rightarrow 0^{+}} f(x)=$
11. $\lim _{x \rightarrow 4^{+}} f(x)=$
12. $\lim _{x \rightarrow 4^{-}} f(x)=$
13. $\lim _{x \rightarrow-\infty} f(x)=$
14. $\lim _{x \rightarrow \infty} f(x)=$
15. Use the definition of a continuous function at a number to answer the following.
a. f is not continuous at $x=-7$ because: \qquad
b. f is not continuous at $x=2$ because: \qquad
c. f is not continuous at $x=4$ because: \qquad
II. For the following problems, sketch a graph of a function that has the indicated features and write an equation for the function that has these features. The function may be a piecewise.

| 1. The function is continuous at $x=3$, but has a
 cusp there. | 2. The function has a limit as x approaches 3 but fails to
 be continuous there because $f(3)$ is undefined. |
| :--- | :--- | | 3. The function has a limit as x approaches -1, |
| :--- |
| has a value for $f(-1)$, but still is not continuous |
| there. |
| 4. The function has no limit as x approaches 0, but
 $f(0)=3$. |

