Name:_____ Period:_____Date:_____

Answer the following questions about function f.

1. f(-5) =2. f(2) =3. f(4) = $4. \lim_{x \to -7} f(x) =$ $5. \lim_{x \to -5} f(x) =$ $6. \lim_{x \to 2} f(x) =$ 7. $\lim_{x \to 4} f(x) =$ 8. $\lim_{x \to 0} f(x) =$ 9. $\lim f(x) =$ $x \rightarrow 0^{-}$ 10. $\lim_{x \to 0^+} f(x) =$ 11. $\lim_{x \to 4^+} f(x) =$ 12. $\lim_{x \to 4^{-}} f(x) =$ 14. $\lim_{x \to \infty} f(x) =$ 13. $\lim_{x \to -\infty} f(x) =$

15. Use the definition of a continuous function at a number to answer the following.

II. For the following problems, sketch a graph of a function that has the indicated features and write an equation for the function that has these features. The function may be a piecewise.

1. The function is continuous at x = 3, but has a cusp there.	2. The function has a limit as x approaches 3 but fails to be continuous there because f(3) is undefined.
3. The function has a limit as x approaches -1, has a value for f(-1), but still is not continuous there.	4. The function has no limit as x approaches 0, but f(0)=3.
5. The function has a limit of 2 as x approaches 0 from the right, but has no limit as x approaches 0 from the left.	6. The function has a step (or jump) discontinuity at x = 1, and f(1) = 6.
7. The function has a limit as x approaches 2 of 5 but f(2) = 4.	8. The function has a right-hand limit of -2 and a left- hand limit of 2 as x approaches -1.