Please have yous Centroid pocket on you desk.

Start on new packet -you will need quphpaper, straightedge, t calcula-br.

Midpoint of $\overline{A B}$

$$
\begin{gathered}
A=(-8,6) \\
\left(\frac{-8+10}{2}, \frac{6+-2}{2}\right) \\
(1,2) \rightarrow \text { label } M
\end{gathered}
$$

II-IO. Triangle centers

Centroid---point of concurrency of the MEDIANS

Circumcenter--- point of concurrency of the PERPENDICULAR BISECTORS

Incenter--- point of concurrency of the ANGLE BISECTORS
orthocenter--- point of concurrency of the ALTITUDES
median-- segment that connects a vertex to the midpoint of the opposite side (in a triangle)

Perpendicular BISECTORS-- line or segment that divides a segment into two congruent pieces at a 90 degree angle.
angle BISECTORS-- line that divides an angle into two congruent angles

Altitude-- (height) the perpendicular distance from a vertex to the opposite side in a triangle.

Concurrent-- lines that intersect in the same point

Point of concurrency --- point where concurrent lines intersect

$$
\begin{aligned}
& \text { (5) } y-y_{1}=m\left(x-x_{1}\right) \\
& m=(1,2) \quad m_{+} \text {for } A B=\frac{9}{4} \\
& y-2=\frac{9}{4}(x-1) \\
& y-2=\frac{9}{4} x-\frac{9}{4} \\
& +2+2 \\
& \left.y=\frac{9}{4} x-\frac{1}{4}\right)^{2}
\end{aligned}
$$

Also $N \rightarrow \dot{\sum}+$ to $B C$
And P and of to $A C$

