\qquad
\qquad Period \qquad
© 2013 Kuta Software LLC. All rights reserved.
Use the definition of the derivative to find the derivative of each function with respect to x.

1) $y=\sqrt{3 x+5}$
2) $y=x^{2}+1$

For each problem, determine if the Mean Value Theorem can be applied. If it can, find all values of \boldsymbol{c} that satisfy the theorem. If it cannot, explain why not.
3) $f(x)=\frac{-x^{2}+9}{2 x} ;[-1,1]$
4) $f(x)=\frac{-x^{2}+1}{4 x} ;[1,5]$
5) $f(x)=\frac{x^{2}-1}{4 x} ;[-3,-1]$
6) $f(x)=\frac{-x^{2}+9}{3 x} ;[-4,-1]$

A particle moves along a horizontal line. Its position function is $s(t)$ for $t \geq 0$. For each problem, find the velocity function $v(t)$ and the acceleration function $a(t)$.
7) $s(t)=t^{3}-22 t^{2}+105 t$

Solve each related rate problem.

8) A hypothetical square grows so that the length of its diagonals are increasing at a rate of 5 $\mathrm{m} / \mathrm{min}$. How fast is the area of the square increasing when the diagonals are 3 m each?
9) A hypothetical square grows so that the length of its sides are increasing at a rate of $5 \mathrm{~m} / \mathrm{min}$. How fast is the area of the square increasing when the sides are 6 m each?

Answers to Review Assignment 11-21

1) $\frac{d y}{d x}=\frac{3}{2 \sqrt{3 x+5}}$
2) $\frac{d y}{d x}=2 x$
3) The function is not continuous on $[-1,1]$
4) $\{\sqrt{5}\}$
5) $\{-\sqrt{3}\}$
6) $\{-2\}$
7) $v(t)=3 t^{2}-44 t+105, a(t)=6 t-44$
8) $A=$ area of square $x=$ length of diagonals $t=$ time Equation: $A=\frac{x^{2}}{2} \quad$ Given rate: $\frac{d x}{d t}=5 \quad$ Find: $\left.\frac{d A}{d t}\right|_{x=3}$ $\left.\frac{d A}{d t}\right|_{x=3}=x \cdot \frac{d x}{d t}=15 \mathrm{~m}^{2} / \mathrm{min}$
9) $A=$ area of square $s=$ length of sides $t=$ time Equation: $A=s^{2} \quad$ Given rate: $\frac{d s}{d t}=5 \quad$ Find: $\left.\frac{d A}{d t}\right|_{s=6}$ $\left.\frac{d A}{d t}\right|_{s=6}=2 s \cdot \frac{d s}{d t}=60 \mathrm{~m}^{2} / \mathrm{min}$
