GRATH:

$$
f(x)=\left\{\begin{array}{cc}
3-x^{2}, & x<1 \\
4, & x=1 \\
4-2 x, & x>1
\end{array}\right.
$$

(1) $\lim _{x \rightarrow 1^{-}} f(x)=2$
(3) $\lim _{x \rightarrow 1} f(x)=2$
(2) $\lim _{x \rightarrow 1^{+}} f(x)=2$
(4) $f(1)=4$
(5) Is $f(x)$ continuouse $x=1$? Use om now definition of continuity.
$f(x)$ is not continuous $C x=1 b c$

$$
\lim _{x \rightarrow 1} f(x) \neq f(1)
$$

Three requiements for $f(x)$ to be continouse $x=C$:
(1) $\lim _{x \rightarrow c} f(x)$ exists
(2) $f(c)$ exists
(3) $\lim _{x \rightarrow c} f(x)=f(c)$

Test Thursday
ETEH Tuesday \& Wednesday Thursday \& Friday optional (can work on error analysis or tutor others!)

Review materials posted online
*Limits (graphically \& algebraically)
*Secant \& tangent lines
*Average \& Instantaneous rates of change
*Continuity

$$
\frac{4 x^{2}-50}{x^{3}-85}
$$

$$
\frac{4 x^{2}-50}{x^{3}-85}=0
$$

$$
\lim _{x \rightarrow \infty} \frac{4 x^{3}+50}{1 x^{3}-85}=4 \quad n=d
$$

$$
\lim _{x \rightarrow \infty} \frac{4 x^{3}+50}{1 x^{3}-85}=4
$$

$$
\lim _{x \rightarrow \infty} \frac{50+4 x^{3}}{-85+x^{3}}=4
$$

$\Sigma x \cdot \lim _{x \rightarrow \infty}$

$$
4 x^{4}+50=\text { due } \quad n>d
$$

$$
\frac{4 x^{4}+50}{x^{3}-85}=-\infty(8 w)
$$

\ldots, find
b) the instantaneous velocity at $t=2$ seconds. slope of the tangent line at $\mathrm{t}=2$

$$
\begin{aligned}
& \begin{aligned}
V V \text { al } & =\frac{s(2)-s(0)}{2-0} \frac{f t}{s c} \\
& =\frac{2^{2}-2.2-\left(0^{2}-2.0\right)}{2}
\end{aligned} \\
& =0 \mathrm{ft} / \mathrm{gc} \\
& \left\{D Q: \frac{f(x+h)-f(x}{h}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text {, } \\
& \lim \frac{s(2+h)-5(2)}{h} \\
& \left\{\begin{array}{l}
\lim _{h \rightarrow 0} \frac{s}{}=\left[\begin{array}{l}
h \\
\lim _{h \rightarrow 0}
\end{array} \frac{(2+h)^{2}-2(2+h)-\left[2^{2}-22\right]}{h}\right.
\end{array}\right. \\
& =\lim _{h \rightarrow 0} \frac{4+4 h+h^{2}-4-2 h-0}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+2 h}{h} \\
& =\lim _{h \rightarrow 0} h+2=2 f+1 \sec
\end{aligned}
$$

10. If $s(t)=t^{2}-3 t+2$ is a measure of miles $t($ hours $)$ a) the average velocity between $t=0$ and $t=4$
find
b) the instantaneous velocity at $t=1$ hour.

$$
s(t)=t^{2}-3 t+2
$$

avg vel

$$
\begin{aligned}
& =\frac{s(4)-s(0)}{4-0} \\
& =\frac{4^{2}-3 \cdot 4+2-\left(0^{2}-3 \cdot 0+2\right)}{4} \\
& =\frac{6-12+2-2}{4} \\
& =1 \text { mi/hr }
\end{aligned}
$$

inst veloaty e $e t=1$
$\lim _{h \rightarrow 0} \frac{5(1+h)-5(1)}{h}$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{(1+h)^{2}-3(1+h)+2-\left(1^{2}-3 \cdot 1+2\right)}{h} \\
& \lim _{h \rightarrow 0} \frac{1+2 h+h^{2}-3-3 h+2-(1-3+2)}{h}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{s(1+h)-s(1)}{h} \\
& =\lim _{h} \frac{(1+h)^{2}-3(1+h)+2-\left(1^{2}-3 \cdot 1+2\right)}{1}
\end{aligned}
$$

secant-tangent relationship.gsp
(a) Rate of Change Homework.docx

