AP Calculus $A B$
Thursday, September 27, 2012
Derivatives test tomorrow
4. If $y=\frac{3 x+4}{4 x+3}$, then $\frac{\partial y}{\partial x}=$
A) $\frac{28 x+25}{(4 x+3)^{2}}$
B) $\frac{28 x-25}{(4 x+3)^{2}}$
C) $\frac{7}{(4 x+3)^{2}}$
(D) $\frac{-7}{(4 x+3)^{2}}$

$$
\frac{d y}{d x}=\frac{(4 x+3)(3)-(3 x+4)(4)}{(4 x+3)^{2}}
$$

$$
\frac{d y}{d x}=\frac{12 x+9-(12 x+16)}{(4 x+3)^{2}}
$$

16. If the line tangent to the graph of the function f at the point (1.5) passes through the point
$(-3,-3)$ then $f^{\prime}(1)$ is $(-3,-3)$ then $f^{\prime}(1)$ is

17. Let the function defined by $f(x)=6 x^{3}-4 x+1$. Which of the following is an equation of the line tangent to the graph of f at the point where $f=1$?
\rightarrow slope \rightarrow dowivatuive

$$
\begin{aligned}
& \text { A) } y=14 x+2 \\
& \begin{array}{l}
\text { B) } y=14 x-11 \\
y=14 x-17
\end{array} \\
& \text { D) } \begin{array}{l}
y=18 x-11 \\
y=18 x-15
\end{array} \\
& f^{\prime}(x)=18 x^{2}-4 \\
& f^{\prime}(1)=18-4=14 \rightarrow \underset{e}{ } \text { © } x=1 \\
& f(1)=6-4+1=3 \\
& y-3=14(x-1) \\
& y=14 x-14+3
\end{aligned}
$$

$$
f^{\prime}(x)=2 x-4
$$

Find x-value where slope is -2 .

$$
\begin{gathered}
2 x-4=-2 \\
x=1 \\
f(1)=1-4-7=-10 \\
m=-2 \text { point }(1,-10) \\
y+10=-2(x-1)
\end{gathered}
$$

23. Given $f(x)=2 x^{2}+x-3$, find $f(x)$ by using the definition of the derivative. (4 pts)

16) Compute

$$
f^{\prime}\left(\frac{\pi}{4}\right)=\lim _{t \rightarrow 0}\left(\frac{\tan \left(\frac{1}{4} \pi+t\right)-\tan \left(\frac{1}{4} \pi\right)}{t}\right)
$$

$$
\begin{aligned}
& f^{\prime}(x)=\sec ^{2} x \\
& f^{\prime}\left(\frac{\pi}{4}\right)=\left(\sec ^{\frac{\pi}{4}}\right)^{0} \\
& f^{\prime}\left(\frac{\pi}{4}\right)=\left(\frac{2}{\sqrt{2}}\right)^{2} \\
& f^{\prime}\left(\frac{\pi}{4}\right)=2
\end{aligned}
$$

$$
f^{\prime}(x)=? \quad f(x)=\frac{3 x+4}{5 x-1}
$$

Equation of tangent fine of $f(x)=2 x^{2}-3 x+\pi$ At the x-value of -1 .

Equation of tangent line of $f(x)=\sin x$ At the x-value of $\pi / 3$.

$$
\text { Find } g^{\prime}(x) \text { if } g(x)=x^{2} \tan x
$$

$$
\begin{aligned}
& h(x)=\frac{\left(3 x^{2}+4 x-7\right)\left(x^{3}-4 x^{2}+2\right)}{\left(x^{2}-1\right)} \\
& h^{\prime}(x)=? \\
& h^{\prime}(x)=\frac{\left(x^{2}-1\right)\left[\left(3 x^{2}+4 x-\right)\left(3 x^{2}-8 x\right)+\left(x^{3}-4 x^{2}+2\right)(6 x+7)-\left(x^{2}+4 x\right) 4\right)}{(2 x)} \\
& \left(x^{2}-1\right)^{2}
\end{aligned}
$$

