AP Calculus AB Thursday, September 27, 2012

Derivatives test tomorrow

4. If
$$y = \frac{3x+4}{4x+3}$$
, then $\frac{\partial y}{\partial x} =$

- A) $\frac{28x+25}{(4x+3)^2}$
- B) $\frac{28x-25}{(4x+3)^2}$
- C) $\frac{7}{(4x+3)^2}$

 $\frac{dy}{dx} = \frac{(4x+3)(3) - (3x+4)(4)}{(4x+3)^2}$

 $\frac{dy}{dx} = \frac{12x+9-(12x+16)}{(4x+3)^2}$

If the line tangent to the graph of the function f at the point (15) passes through the point (-3,-3) then f'(1) is

24. Let the function defined by $f(x) = 6x^3 - 4x + 1$. Which of the following is an equation of the line tangent to the graph of f at the point where f ?

25. Find the equation of the line that is tangent to $f(x) = x^2 - 4x - 7$ and parallel to 2x + y = 4. Show all work. (5 pts)

s'tope->derivative
$$m=-2$$

 $f'(x)=2x-4$

Find x-value where slope is -2.

$$2x-4=-2$$

 $x=1$
 $x=1$

$$M=-2$$
 point $(1,-10)$.
 $y+10=-2(x-1)$

23. Given $f(x) = 2x^2 + x - 3$, find f(x) by using the **definition of the derivative**. (4 pts)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Let
$$f(x) = tanx$$

$$\mathcal{L}(\underline{\mathcal{I}}) = \lim_{t \to 0} \left(\frac{\tan(\frac{1}{4}\pi + t) - \tan(\frac{1}{4}\pi)}{t} \right)$$

$$f(x)=?$$
 $f(x)=\frac{3x+4}{5x-1}$

Equation of tangent line of $f(x) = 2x^2 - 3x + \pi$

At the x-value of -1.

Equation of tangent line of f(x) = Sinx

At the x-value of 11/3.

$$h(x) = \frac{(3x^2 + 4x - 7)(x^3 - 4x^2 + 2)}{(x^2 - 1)}$$

$$h'(x) = ?$$

$$h'(x) = \frac{(\chi^2 - 1)^2 [(3\chi^2 + 4\chi - 1)(3\chi^2 - 8\chi) + (\chi^3 - 4\chi^2 + 1)(6\chi + 1)] - (\chi^2 - 4\chi^2 + 1)}{(\chi^2 - 1)^2}$$