```
APCalculusAB
Thursday,September26,2013
TestTOMORROWoverderivatives(chainrule,productrule,powerrule,quotient
rule,DEFINITIONofDERIVATIVE!)
Bellwork: Use the DENTNWION OF DERTVANIVE find the derivative of \(f(x)=3-2 x^{2}\). Then, check
```

```
\[
\begin{aligned}
& \text { with a role. } \\
& \text { @ER_FutureOnc } \\
& f(x)=3-2 x^{2} \\
& f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{3-2(x+t)^{2}-(3-2 x)}{h} \\
& f(x)=\lim _{h \rightarrow 0} \frac{2-2\left(x^{2}+2 x h+h^{2}\right)-2+2 x^{2}}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0}^{h} \frac{-4 x h-2 h^{2}}{h} \\
& f^{\prime}(x)=\operatorname{lin}-4 x-2 h=-4 x \\
& h \rightarrow 0 \\
& f^{\prime}(x)=-4 x
\end{aligned}
\]
```

*t when is the target lie to

$$
f(x)=\frac{2 x^{3}}{3}-\frac{7 x^{2}}{2}+6 x \text { a horizontal }
$$

$$
f^{\prime}(x)=2 x^{2}-7 x+6
$$

$$
2 x^{2}-7 x+6=0
$$

$$
(2 x-3)(x-2)=0
$$

$$
2 x-3=0 \quad x-2=0
$$

A

$$
x=\frac{3}{2} \quad B^{x=2}
$$

For each of the following, find the equation of the tangent line at the indicated point. Verify by calculator.
19. $y=\sqrt{x^{2}+2 x+8}$ at $(2,4)$
20. $y=\sqrt[5]{3 x^{3}+4 x}$ at $(2,2)$
21. $y=\sqrt{\frac{3 x-1}{2 x+1}}$ at $(-1,2)$

$$
\begin{aligned}
& y=\left(x^{2}+2 x+8\right)^{1 / 2} \\
& y^{\prime}=\frac{1}{2}\left(x^{2}+2 x+8\right)^{-1 / 2}(2 x+2) \\
& y^{\prime}=\frac{x+1}{\sqrt{x^{2}+2 x+8}} \\
& e(, 4) \rightarrow \text { peng in } x=2 \text { to find slope. } \\
& y^{\prime}(2)=\frac{2+1}{\sqrt{2^{2}+2 \cdot 2+8}} \\
& y^{\prime}(2)=\frac{3}{\sqrt{16}}=\frac{3}{4} \\
& y-4=\frac{3}{4}(x-2)
\end{aligned}
$$

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
3	1	8	-3	-5
6	3	-2	4	5
8	-1	3	π	4
1	2	-6	5	0

22. $f(x)+g(x) \quad$ (Ans: -8)
23. $f(x) g(x)($ Ans: -29)
24. $\frac{f(x)}{g(x)}$ (Ans: $\frac{-19}{64}$)

$$
f^{\prime}(x)+g^{\prime}(x)
$$

$f^{\prime}(3)+g^{\prime}(3)$
25. $\frac{g(x)}{f(x)}-3+($ Ans 195$)=-8$

> (26)
\qquad
28. $\sqrt{f(x)}$ (Ans: $\frac{-3}{2}$)

$\left.1.8_{30} f^{-2}(x)\right)^{g}(x)(-5 n s=-77)$
(30)

$$
\left.\mathbb{f}^{3}(x)\right]_{g}(x)
$$

$$
f^{3}(x) \cdot g^{\prime}(x)+g(x) \cdot 3(f(x))^{2} \cdot f^{\prime}(x)
$$

$$
3^{3} \cdot-5+8 \cdot 3 \cdot 1^{2}-3
$$

$$
-5-72
$$

-77

$$
\begin{aligned}
& y= x^{2}-4 x-2 \\
& y^{\prime}=2 x-4 \\
& y^{\prime}(0)=-4 \rightarrow \text { slope of tangent } n \text { ne } e x=0 . \\
& \rightarrow \frac{1}{4} \\
& y=\frac{1}{4} x-2 \text { eon of normal } \\
& \\
& y+2=\frac{1}{4}(x-0)
\end{aligned}
$$

