APCalculusAB
Wednesday,September25,2013
TestFridayoverderivatives!
Thisweek,wewilllearntheproductrule,quotientrule,andchainrule. YouneedtobehereforETEHeveryday!:)Donaldis2for2!!!

Actual AP
Problems!
19. The function f is defined by $f(x)=\frac{x}{x+2}$. What points (x, y) on the graph of f have the property that the line tangent to f at (x, y) has slope $\frac{1}{2}$?
(A) $(0,0)$ only
(B) $\left(\frac{1}{2}, \frac{1}{5}\right)$ only
(C) $(0,0)$ and $(-4,2)$
(D) $(0,0)$ and $\left(4, \frac{2}{3}\right)$
(E) There are no such points.

$$
f^{\prime}(x)=\frac{(x+2)(1)-(x)(1)}{(x+2)^{2}}
$$

$$
f^{\prime}(x)=\frac{x+2-x}{(x+2)^{2}}
$$

$$
f^{\prime}(x)=\frac{2}{(x+2)^{2}}
$$

$$
(x+2)^{2}=4
$$

$$
x+2= \pm 2
$$

$$
f(x)=\frac{x}{x+2}
$$

$$
f(x)=(2 x-1)^{4}
$$

Up to now, we wall have to expand thai in ode to fid $f^{\prime}(x)$.
This $f(x)$ can be thought of as $f(x)=h(g(x))$ where $h(x)=x^{4}$ ald $g(x)=2 x-1$.
Ex.

$$
\left.\begin{array}{l}
k(x)=e^{x} \\
l(x)=\frac{1}{x-2}
\end{array}\right\} \begin{aligned}
& k\left(l(x)=e^{\frac{1}{x^{2}}}\right. \\
& l(k(x))=\frac{1}{e^{x-2}}
\end{aligned}
$$

In order to toke the derivative of composite
functions, we will use the CHAN ROME.

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Ex. $f(x)=(2 x-1)^{4}$

$$
\begin{aligned}
& f^{\prime}(x)=4(2 x-1)^{3} \cdot 2 \\
& f^{\prime}(x)=8(2 x-1)^{3}
\end{aligned}
$$

```
\(f^{\prime}(x)=64 x^{3}-96 x^{2}+48 x-8\)
```

 w/Chaintre
 $f^{\prime}(x)=8(2 x-1)^{3}$ hame (check by
$\Sigma x \cdot g(x)=(3-5 x)^{1 / 5}$
$g^{\prime}(x)=\frac{1}{5}(3-5 x)^{-4 / 5} \cdot(-5)$
$g^{\prime}(x)=-1(3-5 x)^{-4 / 5}$
$=\frac{-1}{\sqrt[3]{(3-5 x)^{4}}}$
Exs. find derivative
(1) $y=\left(x^{2}-4 x+9\right)^{3}$
$y^{\prime}=3\left(x^{2}-4 x+9\right)^{2} \cdot(2 x-4)$
(2) $y=(\sqrt{x}-2)^{4}$
$y^{\prime}=4(\sqrt{x}-2)^{3} \cdot \frac{1}{2} x^{-1 / 2}$
$y^{\prime}=\frac{2(\sqrt{x}-2)^{3}}{\sqrt{x}}$
(3) $y=\left(x^{2}-5 x+1\right)^{2} \cdot(3 x-4)$
$y^{\prime}=\left(x^{2}-5 x+1\right)^{2} \cdot(3)+(3 x-4)(2(2 x-5 x+1)(3 x-5)$

$f(x)=\left(x^{2}-4 x+3\right)^{1 / 2}$
$f^{\prime}(x)=\frac{1}{2}\left(x^{2}-4 x+3\right)^{-1 / 2}(2 x-4)$
$f^{\prime}(x)=\frac{x-2}{\sqrt{x^{2}-4 x+3}}$
$g(x)=\frac{1}{5 x-3}$
$g^{\prime}(x)=\frac{(5 x-3)(0)-1.5}{(5 x-3)^{2}}$
$g^{\prime}(x)=\frac{-5}{(5 x-3)^{2}}$
looke $g(x)=\frac{1}{5 x-3}$ as chaifule
$g(x)=(5 x-3)^{-1}$
$g^{\prime}(x)=-1(5 x-3)^{-2} \cdot 5$
$g^{\prime}(x)=-5(5 x-3)^{-2}$
$g^{\prime}(x)=\frac{-5}{(5 x-3)^{2}}$
12) $y=\left(\frac{2 x-1}{2 x+1}\right)^{3}$
$\left.y^{\prime}=5\left(\frac{2 x-1}{2 x+1}\right)^{4} \cdot \frac{d}{d x}\left(\frac{2 x-1}{2 x+1}\right)\right)^{4}$
$y^{i}=5\left(\frac{2 x-1}{2 x+1}\right)^{4} \cdot \frac{(2 x+1)(2)-(2 x-1)(3)}{(2 x+1)^{2}}$
$y^{\prime}=5\left(\frac{2 x-1}{2 x+1}\right)^{4} \cdot \frac{4 x+2-(4 x-2)}{(2 x+1)^{2}}$
$y^{\prime}=5\left(\frac{2 x-1}{2 x+1}\right)^{4} \cdot \frac{4}{(2 x+1)^{2}}$
$y^{\prime}=\frac{20(2 x-1)^{4}}{(2 x+1)^{6}}$

(8) $3 \cdot[f(x)]^{2} \cdot f^{\prime}(x)$

3. $[(x) 2)^{2} \cdot f^{\prime}(2)$	$e f^{\prime}(x)$
$3 \cdot[-3]^{2} \cdot 6$	$f^{\prime}(6(2)$
(0)	

$3 \cdot[-3]^{2} \cdot 6$	$\left.f^{\prime}(82)\right) \cdot g^{\prime}(2)$
$3 \cdot 9 \cdot 6$	$f^{\prime}(3) \cdot s^{\prime}(2)$

