APCalculusAB
Monday,September23,2013
TestFridayoverderivatives!
Thisweek,wewilllearntheproductrule,quotientrule,andchainrule. YouneedtobehereforETEHeveryday!:)Donald??

Bellwort: Write the EQUANION of the tangent line to the graph of

$$
f(-1)=2-1=-3 \quad f(x)=2 x-x^{2}
$$

ct e $x=$ 1. Using technology, graph fix) and the tangent line on the same axes.

$$
\begin{aligned}
& f^{\prime}(x)=2-2 x \\
& f^{\prime}(-1)=4 \rightarrow \text { This is the slope of the } \\
& \text { target line e } x=-1 \text {. } \\
& \text { Need point also }(-1,-3) \\
& y+3=4(x+1) \\
& y=4 x+1 \\
& \text { eqnof tan urine } Q x=-1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 31) } y=3 x^{5}\left(2 x^{2}+2\right) \\
& y=6 x^{7}+6 x^{5}
\end{aligned}
$$

$$
\text { 32) } y=x^{4}\left(x^{5}+3\right)
$$

33) $y=\left(-x^{5}+1\right) \cdot 5 x^{2}$
34) $y=\left(4 x^{4}+1\right) \cdot-x^{4}$

$$
y^{\prime}=42 x^{6}+30 x^{4}
$$

(33) $y=-5 x^{7}+5 x^{2}$

$$
y^{\prime}=-35 x^{6}+10 x
$$

$$
y=3 x^{5}\left(2 x^{2}+2\right)
$$

Use prod mile:

$$
\begin{aligned}
& f=3 x^{5} \quad g=2 x^{2}+2 \\
& f^{\prime}=15 x^{4} \quad g^{\prime}=4 x \\
& \frac{d}{d x}(f \cdot g)=f g^{\prime}+g \cdot f^{\prime} \\
& y^{\prime}=3 x^{5} \cdot 4 x+\left(2 x^{2}+2\right) \cdot 15 x^{4} \\
& y^{\prime}=12 x^{6}+30 x^{6}+30 x^{4} \\
& y^{\prime}=42 x^{6}+30 x^{4}
\end{aligned}
$$

40) $y=\left(2+3 x^{-5}\right)\left(x^{2}+2\right)$

Product Rule 1st:

$$
\begin{aligned}
& f=2+3 x^{-5} \quad g=x^{2}+2 \\
& f^{\prime}=-15 x^{-6} \quad g^{\prime}=2 x \\
& y^{\prime}=(2+3 x)(2 x)+\left(x^{2}+2\right)\left(-15 x^{-6}\right) \\
& \text { simplig w/agha... } \\
& y^{\prime}=4 x+6 x^{-4}-15 x^{-4}-30 x^{-6} \\
& y^{\prime}=4 x-9 x^{-4}-30 x^{-6}
\end{aligned}
$$

Now, same problem-expand (I), then power

$$
\text { 40) } y=\left(2+3 x^{-5}\right)\left(x^{2}+2\right)
$$

$$
\begin{aligned}
& y=2 x^{2}+4+3 x^{-3}+6 x^{-5} \\
& y^{\prime}=4 x-9 x^{-4}-30 x^{-6}
\end{aligned}
$$

c) Find $f(x)$ if $f(x)=\left(3 x^{2}-2 x+5\right)\left(-5 x^{4}+2 x^{3}-7 x^{2}+x+2\right)$

$$
\begin{aligned}
f^{\prime}(x)= & \left(3 x^{2}-2 x+5\right)\left(-20 x^{3}+6 x^{2}-14 x+1\right)+ \\
& \left(-5 x^{4}+2 x^{3}-7 x^{2}+x+2\right)(6 x-2)
\end{aligned}
$$

Use the chart to find $h^{\prime}(4)$

$f(4)$	$f^{\prime}(4)$	$g(4)$	$g^{\prime}(4)$
-8	3	3π	4

31) $h(x)=5 f(x)-\frac{2}{3} g(x)$
32) $h(x)=3+8 f(x)$
33) $h(x)=f(x) g(x)$
(3)

$$
\text { (3) } h^{\prime}(x)=5
$$

$$
h^{\prime}(4)=5 \cdot f^{\prime}(4)-\frac{2}{3} \cdot g^{\prime}(4)
$$

Go to chat

$$
\begin{aligned}
& h^{\prime}(4)=5 \cdot 3-\frac{2}{3} \cdot 4 \\
& h^{\prime}(4)=\frac{45}{3}-\frac{8}{3} \\
& h^{\prime}(4)=\frac{37}{3}
\end{aligned}
$$

$$
\begin{aligned}
& l(t) \cdot=1(t)+\omega(t) \cdot l^{\prime}(t)=A^{\prime}(t) \\
& A(t)=\omega(t) \cdot l(t) \\
& A^{\prime}(t)=l(t) \cdot \omega^{\prime}(t)+\omega(t) \cdot l^{\prime}(t)
\end{aligned}
$$

PRODUCTRule

$$
\text { OR } \frac{d}{d x}[f \cdot g]=f \cdot g^{\prime}+g \cdot f^{\prime}
$$

