AP Calculus AB

Wednesday, September 13, 2013

Please check your HW answers with

$$
\begin{aligned}
& y=\frac{4 x^{2}-5 x+6}{3} \\
& y=\frac{4 x^{2}}{3}-\frac{5 x}{3}+2 \\
& y^{\prime}=\frac{8}{3} x-\frac{5}{3} \\
& \text { somump day ! ! } \\
& 11 \cdot y=\frac{x^{3}-3 x^{2}+10 x-5}{x^{2}} \\
& y=x-3+10 x^{-1}-5 x^{-2} \\
& y^{\prime}=1-10 x-2 \\
& y^{\prime}=1-\frac{10}{x^{2}}+\frac{10}{x^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (fe) } y=\frac{-5}{3} x^{-3} \\
& y^{\prime}=5 x^{-4} \\
& y^{\prime}=\frac{5}{x^{4}} \\
& 5 d) y=6 \sqrt{x}(\sqrt[3]{x}-2 x+6) \\
& y=6 x^{1 / 2}\left(x^{1 / 3}-2 x^{\prime}+6\right) \\
& y=6 x^{\prime / 6}-12 x^{3 / 2}+36 x^{\frac{1}{2}} \\
& y^{\prime}=\frac{5}{9} x^{-4} \\
& y^{\prime}=\frac{5}{5}-18 x^{1 / 2}+18 x^{-1 / 2} \\
& \left.y^{\prime}=18 \sqrt{x}+\frac{18}{\sqrt{x}}\right)
\end{aligned}
$$

$$
f(x)=\left(x^{2}-1\right)(x+2)
$$

$$
f(x)=x^{3}+2 x^{2}-x-2
$$

$$
f^{\prime}(x)=3 x^{2}+4 x-1
$$

$$
y=\left(\sqrt{x}+3 x^{2}-4 x^{1 / 2}-5 x^{2 / 3}\right)(x-7.2)^{4}
$$

With our knowledge right now, we would have to expand this. "YUCK," says Jake.
Let's learn another way to do this!

$$
\text { 2. } \begin{aligned}
& f(x)=\frac{1}{x}-\frac{3}{x^{3}}+\frac{4}{x^{3}} \\
& f(x)=1 x^{-1}-3 x^{-2}+4 x^{-3} \\
& f^{\prime}(x)=-1 x^{-2}+6 x^{-3}-12 x^{-4} \\
& f^{\prime}(x)=\frac{-1}{x^{2}}+\frac{6}{x^{3}}-\frac{12}{x^{4}} \\
& f^{\prime}(1)=-\frac{1}{1^{2}}+\frac{6}{1^{3}}-\frac{12}{1^{4}} \\
& f^{\prime}(1)=-1+6-12
\end{aligned}
$$

$$
f^{\prime}(1)=-7
$$

This means the slope of $f(x)$ ex $=1$ is

t	Length $_{\text {can }}$	Width am	area, cm^{2}
0	5	3	15
1	6	5	30
2	7	7	49
3	8	9	72
t	$5+1 t$	$3+2 t$	$(5+1 t)(3+2 t)$

