AP Calculus AB
Tuesday, September 17, 2013

Find fir (x) if $f(x)=-4 / x$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x) \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{-4}{x+h}-\frac{-4}{x}}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{x}{x}\right) \frac{4}{x+h}+\frac{4}{x}\left(\frac{x+h}{x+h}\right) \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{-4 x+4(x+h)}{x(x+h) \cdot h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{-4 x+4 x+4 h}{x h(x+h)} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{4 h}{x k(x+h)} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{4}{x(x+h)}=\frac{4}{x^{2}} \\
& f_{h}(x)=\frac{-4}{x} \\
& f^{\prime}(x)=\frac{4}{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (8) } f(x)=\sqrt{x} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{\sqrt{x+h}-\sqrt{x}}{h}\right)\left(\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) } f(x)=\frac{-1}{x^{2}} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left(\frac{x}{2}-\frac{-1}{x^{2}} \frac{(x+h)^{2}}{h}+\frac{1}{x^{2}}\right.}{\left(\frac{(x+h)^{2}}{(x+h)^{2}}\right)} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{-x^{2}+(x+h)^{2}}{x^{2} h(x+h)^{2}} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{-x^{2}+x^{2}+2 x h+h^{2}}{x^{2} h(x+h)^{2}} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{x(2 x+h)}{x^{2} h(x+h)^{2}} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{2 x+h}{x^{2}(x h)^{2}}=\frac{2 x}{x^{2} \cdot x^{2}}=\frac{2}{x^{3}} \\
& f(x)=\frac{-1}{x^{2}} \rightarrow f^{\prime}(x)=\frac{2}{x^{3}}
\end{aligned}
$$

Find $f^{\prime}(x)$ if $f(x)=\frac{1}{\sqrt{x}}$

Make sure you can do this problems
$\begin{array}{lcc} & \frac{f(x)}{2 x} & \frac{f^{\prime}(x)}{2} \\ \text { (2) } & x^{2}-5 & 2 x\end{array}$
(3) $x^{2}+3 x-4$ Qx+3
(4) $4 x^{2}-\underline{-6 x+1}$ (8) $x-6$
(5) $x^{3}+2 x$

$$
3 x^{2}+2
$$

(c) $\frac{5}{x}+1 \quad 5 x^{-1}+1$ $\frac{-5}{x^{2}}=-5 x^{-2}$
(6) $-\frac{1}{x^{2}}$

$$
\frac{2}{x^{3}}
$$

(8) $\sqrt{x} x^{1 / 2}$

$$
\frac{1}{2 \sqrt{x}} \frac{1}{2} x^{-1 / 2}
$$

(9) $x^{4}-5 x^{2}$

$$
4 x^{3}-10 x
$$

(10) $2 x^{3}-3 x+1$ $6 x^{2}-3$
(11) $x^{1 / 3}$

$$
\frac{1}{3} x^{-2 / 3}=\frac{1}{3 \sqrt[3]{x^{2}}}
$$

(B) $3 x^{4}-7 x^{2}$

$$
12 x^{3}-14 x
$$

(B) $\mid x^{\pi}$

$$
\pi x^{\pi-1}
$$

Power Rule
Today: $1^{\text {Ruhs }}$

$$
\frac{d}{d x}[c]=0
$$

The derivative of c is 0 .

$$
\begin{aligned}
& p: 36-37(1-5) \\
& p .39: 1-15
\end{aligned}
$$

