AP Calculus AB
Friday, August 24, 2012
Bellwork: Check HW with someone around you.
Discuss Average Rate of Change (from summer assignment)

Does local linearity apply to EVERY function at EVERY
point?

$$
\begin{aligned}
& \text { MMM: (02) Slopes of Secant \& Tangent Lines Read \& } \\
& \text { Take Notes, try problems } \\
& 360^{\circ}=2 \pi \text { radians } \\
& \text { Inole }=6.02 \times 10^{23} \text { atoms } \\
& 12 m=1 f+ \\
& \text { 2. } 54 \mathrm{~cm}=1 \mathrm{~mm} \\
& \begin{array}{r}
? \frac{\text { miles }}{w}=\frac{72 \mathrm{~km}}{\min } \sqrt{\frac{60 \mathrm{~min}}{1 \mathrm{mo}}} \\
360^{\circ}=2 \pi \mathrm{rad} \\
\frac{360^{\circ}}{2 \pi \mathrm{rad}}=1
\end{array} \\
& \begin{array}{r}
? \frac{\text { miles }}{w}=\frac{72 \mathrm{kma}}{\mathrm{~min}} \frac{6 \text { min }}{1 \mathrm{mon}} \\
360^{\circ}=2 \pi \mathrm{rad} \\
\frac{360^{\circ}}{2 \pi \mathrm{rad}}=1 \\
? \text { rad }=\frac{135}{1} \cdot \frac{2 \pi \mathrm{rad}}{360^{\circ}}
\end{array} \\
& \begin{array}{r}
? \frac{\text { miles }}{w}=\frac{72 \mathrm{kn}}{\mathrm{~min}} \frac{60 \mathrm{~min}}{1 \mathrm{~lm}} \\
360^{\circ}=2 \pi \mathrm{mal} \\
\frac{360^{\circ}}{2 \pi \mathrm{rad}}=1 \\
\text { ? rod }=\frac{135}{1} \cdot \frac{2 \mathrm{mad}}{360^{\circ}}
\end{array} \\
& \frac{6 \min =}{1 \mathrm{ln}}=\frac{1 \mathrm{~h}}{1 \mathrm{~m}} \\
& \frac{60 \mathrm{~min}}{1 m}=1 \\
& ? \operatorname{drg}=\frac{5 \pi}{3} \cdots \frac{180^{\circ}}{\pi \mathrm{col}}
\end{aligned}
$$

Tangent to a Curve Homework
Using the method shown in class, find the tangent line to $f(x)=x^{3}-2 x^{2}+5$ at $x=-1$. Be sure to check both sides of $\mathrm{x}=-1$. A complete solution will include calculations, a graph, a table, and sentence explanations. A graph of the function is shown below.

As we approach $x=-1$ from the loft v firm the right, the stere of the sector hue approaches?

As point Q gets "really close" to point P, we have a tangent line, so we can say that the slope of the tangent line at the point $(-1,2)$ is 7 .

You leave for a trip at 9:00 am and travel 120
miles in 2.5 hours. What is your average speed?

$$
\text { At } 11: 30 \mathrm{am} \text { you }
$$

$$
\text { are } 120 \text { miles from }
$$

What you stated. What was avg. spent?

At timet=3, you leave on a trip. At time $t=5.5$ hrs you have traveled 120 miles. Avg speed?

At time $t=1.7$ you are at mile marker
72. At time $t=4.2$, you are at mile
marker 192. Tyg speed?

$$
\frac{192-72}{4.2-1.7}
$$

Average rate of change is slope.
(1) $f(x)=x^{3}-2 x$
$[0,4] \quad \frac{f(4)-f(0)}{4-0}=14$

