Write the number of acing "problem" problems on the beard

$$
\begin{aligned}
& 1,28,36,38,49-54 \\
& 26,34,46
\end{aligned} \int \csc ^{2} \text { sd } x=-\operatorname{dtc} c
$$

(54)

$$
\begin{array}{r}
\int \operatorname{cec}^{2}\left(\frac{x}{2}\right) d x \\
u=\frac{x}{2}=\frac{1}{2} x \\
d u=\frac{1}{2} d x \\
2 d u=d x \\
\int\left(\csc ^{2} u\right) 2 d u \\
2 \int \csc ^{2} u d u \\
=-2 \cot u+C \\
=-2 \cot \left(\frac{x}{2}\right)+c
\end{array}
$$

$$
\begin{aligned}
& \text { (55) } \begin{array}{l}
\int \frac{\sin x}{\cos ^{3} x} d x \\
u=\cos x \\
d u=-\sin x d x \\
-1 \cdot d u=\sin x d x \\
\int \frac{-1 \cdot d u}{u^{3}} \\
\int-1 \cdot u^{-3} d u \\
=\frac{-1 \cdot u^{-2}}{-2}+C \\
=\frac{1}{2} \cdot \frac{1}{u^{2}}+C \\
=\frac{1}{2 \cos ^{2} x}+C
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& \int \sqrt{\tan x} \sec ^{2} x d x \\
& u=\tan x \\
& d x=\sec ^{2} x d x \\
& \int u^{1 / 2} d u \\
&= \frac{2 u^{3 / 2}}{3}+C \\
&=\frac{2(\tan x)^{3 / 2}}{3}+C
\end{aligned}
$$

$$
\text { (48) } \begin{aligned}
& \left\{\begin{aligned}
& \sec (1-x) \tan (1-x) d x \\
& u=1-x \\
& d u=-1 \cdot d x \\
&-1 \cdot d u=d x
\end{aligned}\right.
\end{aligned}
$$

$-1 \int \sec u \tan y d u$

$$
=-1 \cdot \sec u+C
$$

$$
=-1 \cdot \sec (1-x)+c
$$

15) $\int_{0} \sin ^{3} x \cos x d x$

16) $\int \frac{x-5}{\sqrt{x-6}} d x$
