Please check homework with someone. Write the number of any problem problems on the board.

$$
\begin{aligned}
& \text { (50) } 95 \% \rightarrow z^{*}=1,96 \\
& \hat{p}=\frac{317}{400} \sqrt{\frac{\hat{p(1-\hat{p})}}{n}} \\
& \text { margin of err ar }=z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\
& \underbrace{1.96 \sqrt{\frac{317}{\frac{30}{40} \cdot \frac{83}{400}}}}_{0.03974 \rightarrow 0.04}
\end{aligned}
$$

Ch. 8 Test Friday

Random-SRS
Normal-775>10

$$
325>10
$$

Independence -The small ehough (< 10% of ppolation) $/$

$$
\begin{aligned}
& z^{*}=1.96 \\
& \text { standaderan }=\sqrt{\frac{\hat{\beta}(1-\hat{p})}{n}} \\
& \sqrt{\frac{\sqrt[775]{100}}{\frac{10325}{1100}}} \sim \approx 0.0137 \\
& \left(\frac{775}{100} \pm 1.96(.0137)\right.
\end{aligned}
$$

$$
(0.6676,0.7315)
$$

estimate $\pm M$ of Σ
z^{*} Starr $=0.02$

$$
1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=0.02
$$

Assume \hat{p} is $\frac{775}{1100}=0.705$

$$
n \geqslant 1998
$$

