AP Calculus AB

Tuesday, December 3, 2013

Please work on $\$ 3$ from the Free Response Packet.
Also...Take a piature of your HW and then turn it into the tray.
3) Consider the curve $x y^{2}-x^{3} y=6$
a) Show that $\frac{d y}{d x}=\frac{3 x^{2} y-y^{2}}{2 x y-x^{3}}$

$$
\begin{aligned}
& x=2 y \cdot y^{2}+y^{2} \cdot 1=\left(x^{3} y^{2}+y^{2} 3 x^{2} \cdot 1\right)=0 \\
& 2 x y \cdot y^{\prime}+y^{2}-x^{3} y^{\prime}-3 x^{2} y=0 \\
& y^{\prime}\left(2 x y-x^{3}\right)=3 x^{2} y-y^{2} \\
& y^{\prime}=\frac{3 x^{2} y-y^{2}}{2 x y-x^{3}}
\end{aligned}
$$

b) Find all points on the curve whose x-coordinate is 1 , and write the equation
for the tangent line a t these points.

c) Find the x-coordinate of each point on the curve where the tangent line is vertical.
$\frac{d y}{d x}=\frac{3 x^{2} y-y^{2}}{2 x y-x^{3}}$

$x y^{2}-x^{3} y=6$

Find the point on the graph of the function that is closest to the given point.

Function

$$
f(x)=\sqrt{x}
$$

$$
\frac{\text { Point }}{(4,0)}
$$

$$
\begin{aligned}
& d=\sqrt{(x-4)^{2}+(\sqrt{x}-0)^{2}} \\
& d=\sqrt{x^{2}-8 x+16+x} \\
& d=\left(x^{2}-7 x+16\right)^{1 / 2}
\end{aligned}
$$

Find minimum: $x^{2}-7 x+16=g(x)$

$$
\begin{aligned}
& g^{\prime}(x)=2 x-7 \\
& g^{\prime}(x)=0 \text { when } x=\frac{7}{2}
\end{aligned}
$$

Absolute minimum

x	$d=\sqrt{x^{2}-7 x+16}$
0	4
$\frac{7}{2}$	1.936
4	2
5	$\sqrt{25-35+1 / 6}=\sqrt{6}>2$

Tonight - Try last right's hw-(agem)
-FR packet

- dowir-nuleo
- unitande 1 torus

