1)

The figure above shows the graph of f^{\prime}, the derivative of the function f, for $-7 \leq x \leq 7$. The graph of f^{\prime} has horizontal tangent lines at $x=-3, x=2$, and $x=5$, and a vertical tangent line at $x=3$.
a) Find all values of x, for $-7<x<7$, at which f attains a relative minimum. Justify your answer.
b) Find all values of x, for $-7<x<7$, at which f attains a relative maximum. Justify your answer.
c) Find all values of x, for $-7<x<7$, at which $f^{\prime \prime}(x)<0$.
a) f attains a relative minumim when f^{\prime} goes from negate to positive. Thiscour © $x=-1$.
b) f attaris a relative maximum when f^{\prime} goes from positive to negative. This occur- $x=-5$.
c) $f^{\prime \prime}(x)<0$ when f^{\prime} is decreasing. This occurs on the following intervals: $(-7,-3) \cup(2,3) \cup(3,5)$.
(5 points) 1. Suppose a function f is differentiable for all x and $f(0)=0$. If $g(x)$ is defined as $g(x)=f(x) \cos (x)$, which of the following statements must be true? (Circle your answer.)

1. There exists a number c in $\left(0, \frac{\pi}{2}\right)$ such that $g^{\prime}(c)=0$.

1!. There exists a numbercin $\left(\frac{\pi}{2}, \pi\right)$ such that $g^{\prime}(c)=0$.
III. There exists a number c in $\left(-\frac{\pi}{2}, 0\right)$ such that $g^{\prime}(c)=0$.
(D)

$$
\text { Given } \begin{aligned}
f(0)=0 \rightarrow g(0) & =f(0) \cos (0) \\
g(0) & =0 \\
g\left(\frac{\pi}{2}\right) & =f\left(\frac{\pi}{2}\right) \cos \frac{\pi}{2} \\
g\left(\frac{\pi}{2}\right) & =0
\end{aligned}
$$

slope btu $(0,0)$ i $\left(\frac{\pi}{2}, 0\right)$ is 0 .

$$
\begin{aligned}
& g\left(-\frac{\pi}{2}\right)=f\left(-\frac{\pi}{2}\right) \cdot \cos \left(-\frac{\pi}{2}\right) \\
& g\left(-\frac{\pi}{2}\right)=0
\end{aligned}
$$

Slope bah $\left(-\frac{\pi}{2}, 0\right)$! $(0,0)$ is 0 .

