

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\cos ^{2} x}{x}-\frac{1}{5} \\
& y_{1}=(\cos (x))^{2} \div x-0.2 \\
& x: 0 \text { +o } 10 \\
& y:-1 \text { to } 1
\end{aligned}
$$

$$
\text { (31) } \lim _{x \rightarrow \infty} \frac{1 x^{2}-4}{2+x+4 x^{2}}=-\frac{1}{4}
$$

$$
\text { (22) } \lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}+h\right)-\cos \frac{\pi}{2}}{h}
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
f(x)=\cos -x \text { (thus question is }
$$

$$
\left.\begin{array}{l}
f(x)=\cos x \\
x \text {-value is } \frac{\pi}{2}
\end{array}\right\} \begin{aligned}
& \text { asking for } f^{\prime}\left(\frac{\pi}{2}\right) ? ~
\end{aligned}
$$

$$
f^{\prime}(x)=-\sin x
$$

$$
f^{\prime}\left(\frac{\pi}{2}\right)=-1
$$

$$
\text { (42) fid } \frac{d V}{d t} \text { i plog i } 40 \text { sec. }
$$

$$
\begin{aligned}
\frac{d V}{d t} & =-40+0.4 t \\
\left.\frac{d V}{d t}\right|_{1.40} & =-40+0.4(40) \\
& =-24 \mathrm{~s}^{3} / \mathrm{sc}
\end{aligned}
$$

I freatio is cortinuons ex=c iff:

$$
\text { (1) } f(c) \text { exists }
$$

$$
\lim _{10} \text { fing } 2 \text { (2) } \lim _{x \rightarrow C} f(x) \text { exists }
$$

$$
\text { (3) } \lim _{x \rightarrow c} f(x)=f(c)
$$

L'tbptal'sRule

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{f^{2}(x)}{g^{\prime}(x)}
$$

$$
\text { Ex. } \lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{0}{0} \text { indetemineatform }
$$

use ('thiphocspule:

$$
\lim _{x \rightarrow 0} \frac{\cos x}{1}=\frac{1}{1}-1
$$

