1.
$$\lim_{h \to 0} \frac{\ln(4+h) - \ln(4)}{h}$$
 is
2. Find $f(4)$ if $f(x) = \ln x$. $f'(x) = 1$
There are exactly the same problems
Define of Derivative
 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
a) Let p and g be real number and let L by the function defined by
 $f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
a) Find the values of g in terms of g , for which f is continuous at $x = 1$
b) The discussion of g of g for which f is continuous at $x = 1$
b) The discussion of g of g for which f is continuous at $x = 1$
b) $2p+2(x-1) = g$
 $2p+2(1-1) = g$
 $x = 2p = g$
 $1 = 2p = 1 = p$
 $3p = 1 = 2p = 2$
 $(-p = 3)$
 $(-p = 3$

- 5)
 - A function f is continuous on the closed interval [-3, 3] such that f(-3) = 4 and f(3) = 1. The functions f' and f'' have the properties given in the table below.

x	-3 < x < -1	x = -1	-1 < x < 1	x = 1	1 < x < 3
f'(x)	Positive	Fails to exist	Negative	0	Negative
<i>f</i> "(x)	Positive	Fails to exist	Positive	0	Negative
	CCU		C C U		CCD

- (a) What are the *x*-coordinates of all absolute maximum and absolute minimum points of *f* on the interval [-3, 3]? Justify your answer.
- (b) What are the *x*-coordinates of all points of inflection of *f* on the interval [-3, 3]? Justify your answer.

(c) On the axes provided, sketch a graph that satisfies the given properties of f.

(b) \mathcal{O}

.Since f'(x) is negative on (-1,1) and (1,3), f(x) is decreasing on those intervals. Therefore, f(x) has an absolute minimum at x = 3.