1.

$$
\lim _{h \rightarrow 0} \frac{\ln (4+h)-\ln (4)}{h} \text { is }
$$

2. Find $f^{\prime}(4)$ if $f(x)=\ln x . \begin{aligned} & f^{\prime}(x)=\frac{1}{x} \\ & f^{\prime}(4)=\frac{1}{4}\end{aligned}$

There are exactly the same problems.

$$
\begin{aligned}
& \text { Defin of Derivative } \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

4) Let p and q be real numbers and let f be the function defined by
$f(x)=\frac{(+2 x p(x-1)+(x-1)}{x>+1} x \rightarrow 1 \rightarrow \frac{d}{d x} \rightarrow 0+2 p+2(x-1)^{1}$.
a) Find the values of q, in terms of p, for which f is continuous at $x=1$
b) Find the values of p and q for which f is differentiable at $x=1$
c) If p and q have the values determined in part b , is $f^{\prime \prime}$ a continuous function? Justify your answer.
a) $1+2 p(1-1)+(1-1)^{2}=q \cdot 1+p$
$1=q+p$
$1-p=q$
b) $2 p+2(x-1)=q$

$$
2 p+2(1-1)=8
$$

$$
\star 2 p=q
$$

$$
1-p=q
$$

$$
2 p=1-p
$$

$$
\begin{aligned}
& 3 p=1 \\
& p=\frac{1}{3} \rightarrow q=\frac{2}{3}
\end{aligned}
$$

c) $f(x)=\left\{\begin{array}{l}1+2 \cdot \frac{1}{3}(x-1)+(x-1)^{2}, x=3 \\ \frac{2}{3} x+\frac{1}{3}, x>1\end{array}\right.$
$f^{\prime}(x)=\left\{\begin{array}{l}\frac{2}{3}+2(x-1), x=1 \\ \frac{2}{3}, x>1\end{array}\right.$
$f^{\prime \prime}(x)= \begin{cases}2, & x \leq 1 \\ 0, & x>1\end{cases}$
The second derivative is not continuous e $X=1$.

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f^{\prime \prime}(x)=2 \\
& \lim _{x \rightarrow 1^{+}} f^{\prime \prime}(x)=0
\end{aligned}
$$

A function f is continuous on the closed interval $[-3,3]$ such that $f(-3)=4$ and $f(3)=1$. The functions f^{\prime} and $f^{\prime \prime}$ have the properties given in the table below.

(a) What are the x-coordinates of all absolute maximum and absolute minimum points of f on the interval $[-3,3]$? Justify your answer.
(b) What are the x-coordinates of all points of inflection of f on the interval $[-3,3]$? Justify your answer.
(c) On the axes provided, sketch a graph that satisfies the given properties of f.
(b) A point of iflectivi oc cuss when $f^{\prime}(x)$ goes from positive to negatuic a negative to positive. According to the chat, $f^{\prime}(x)$ gores for positive to negative $e x=1$. Therefore, $f(x)$ has a point of riflection at the x-value of 1 .

$$
\text { Af } x=-1, f(x)
$$

has an absolute maximum because $f(x)$ goes from positive to negative $e x=-1$ and $f(-\xi)=4$. Since $f^{\prime}(x)$ is positive from $x=-3$ to $m(-3,-1) \therefore f(-1)>f(-3)$
making $x=-1$ the x-value for the abr late maximum.
.Since $f^{\prime}(x)$ is negative on $(-1,1)$ and $(1,3), f(x)$ is decreasing on those intervals. Wherefore, fix) has ain absolute minimum at $x=3$.

