

Area A rectangular page is to contain 30 square inches of print. The margins on each side are 1 inch. Find the dimensions of the page such that the least amount of paper is used.

Find y^{\prime} if $y=\arccos x$.

$$
\begin{gathered}
\cos y=x \\
-y^{\prime} \sin y=1 \\
y^{\prime}=\frac{-1}{\sin y} \rightarrow \frac{-1}{\frac{1}{x}} \\
\frac{d}{d x}\left[\arccos u=\frac{-u^{\prime}}{\sqrt{1-x^{2}}}\right.
\end{gathered}
$$

Figme ant derivative of $y=\arctan x$.

$$
\begin{gathered}
\tan y=x \\
y^{\prime} \cdot \sec ^{2} y=1 \\
y^{\prime}=\frac{1}{\sec ^{2} y} \\
y^{\prime}=\frac{1}{x^{2}+1} \\
\frac{d}{d x}[\arctan u]=\frac{u^{1}}{u^{2}+1}
\end{gathered}
$$

Flashcards $w /$ these 3 new denivules

Ex. Find $f^{\prime}(x)$ if $f(x)=\arcsin (2 x)$
Rule $\frac{d}{d x}(\arcsin u)=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$

$$
f^{\prime}(x)=\frac{2}{\sqrt{1-4 x^{2}}}
$$

Ex. Find y^{\prime} if $y=\left(\arccos \frac{x}{2}\right)^{3}$

$$
y^{\prime}=3\left(\arccos \frac{x}{2}\right)^{2} \cdot\left(\frac{-1 / 2}{\sqrt{1-\frac{x^{2}}{4}}}\right)
$$

Ex. Find y^{\prime} if $y=x \sin ^{-1}(x)+\sqrt{\left(1-x^{2}\right)^{1 / 2}}$

$$
\begin{aligned}
& y^{\prime}=\frac{x \cdot 1}{\sqrt{1-x^{2}}}+\sin ^{-1}(x)+(-2 x) \frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}} \\
& y^{\prime}=\frac{x}{\sqrt{1-x^{2}}}+\sin ^{-1}(x)-\frac{x}{\sqrt{1-x^{2}}} \\
& y^{\prime}=\sin ^{-1}(x)
\end{aligned}
$$

Packet - ven Ting functions
FR packet - close to finished Be Prep bosk

The twice-differentiable function f is defined for all real numbers and satisfies the following conditions:

$$
f(0)=2, \quad f^{\prime}(0)=-4, \text { and } f^{\prime \prime}(0)=3
$$

(a) The function g is given by $g(x)=e^{a x}+f(x)$ for all real numbers, where a is a constant. Find $g^{\prime}(0)$ and $g^{\prime \prime}(0)$ in terms of a. Show the work that leads to your answers.
(b) The function h is given by $h(x)=\cos (k x) f(x)$ for all real numbers, where k is a constant. Find $h^{\prime}(x)$ and write an equation for the line tangent to the graph of h at $x=0$.

