AP Calculus AB

Thursday, November 7, 2013

Historicel Cunves Assignment-do not let me forget cbovt this!III

1. Witch of A gnesi-Gavin! Buzce
2.
3. Taylor a Emity Bifolium
4. Katie sfohe Folium of Descantes
5. Jake a Chuchie Nentonis Tridect
6. Find equation of tengent line dt specific point.
7. Check your work with CGB.
8. Print out a graph with the original curve \mathfrak{F} the tongent line.
9. Paste onto colored paper (I have some).
10. Tape/paste your work onto the back of the paper.
11. I will be displaging theseI

You have to do all five problems. You will be assigned ONLY ONE to print \mathfrak{G} post.
A camera is mounted 3,000 feet from the space shuttle launching pad. The camera needs to pivot as
the shuttle is launched and needs to kep the subtle in focus. If the shuttle is rising vertically at
80 feet/ sec when it is 4,00 feet high, how fast is the camera-to-shuttle distance changing?

In this problem, how fast is the angle of elevation of the camera changing at that moment in time? What variable are we trying to find? Since this is a function of θ, we need a trig function There are three trig functions we could use. Let's try all three and determine which is best.
$\sin \theta=\frac{y}{z}$
$\frac{d \theta}{d t} \frac{z}{x}$

$$
\begin{aligned}
& \frac{d \theta}{d t} \sec ^{2} \theta=\frac{x \frac{d y}{d t}-y \frac{d x}{d t}}{x^{2}} \\
& \frac{d \theta}{d t}=\frac{x \frac{d y}{d t}}{x^{2}-\sec ^{2} \theta} \\
& \frac{d \theta}{d t}=\frac{d y / d t}{x / 8 c^{2} \theta} \\
& \frac{d \theta}{d t}=\frac{800 \cdot f / s e c}{(30009)(5 / 3)^{2}} \quad \frac{5}{3} \quad 4 \\
& \frac{d \theta}{d t}=\frac{800}{3000 \cdot \frac{25}{9}}=\frac{12}{125} \frac{\frac{f t}{\sec }}{f t} \quad \frac{t+1}{\sec \cdot \frac{5}{4}} \quad 1 / \mathrm{sec}
\end{aligned}
$$

$$
\frac{d \theta}{d t}=\frac{12}{125} \mathrm{Hy}
$$

Sand is poured on a beachereang cone whose radius is always equal to twice its height. If the sand
is poured at the rate fo $20 \mathrm{in}^{3} / \mathrm{sec}$, inches?

$$
\begin{aligned}
& r=2 h \\
& \frac{d V}{d t}=\frac{20 \mathrm{in}^{3}}{\sec } \\
& \frac{d h}{d t}=? \\
& V=\frac{1}{3} \pi \pi^{2} h
\end{aligned}
$$

$$
\frac{d V}{d t}=\frac{1}{3} \pi\left[r^{2} \frac{d h}{d t}+h \cdot 2 r \cdot \frac{d r}{d t}\right]
$$

$$
r=2 h \longrightarrow \text { when } h=2, r=4
$$

$$
\frac{d r}{d t}=2 \frac{d h}{d t}
$$

$$
20=\frac{1}{3} \pi\left[4^{2} \cdot \frac{d h}{d t}+2 \cdot 2 \cdot 4 \cdot 2 \frac{d h}{d t}\right]
$$

$$
20=\frac{1}{3} \pi\left[16 \frac{d h}{d t}+32 \frac{d h}{d t}\right.
$$

$$
20=\frac{1}{3} \pi \cdot 48 \frac{d h}{d t}
$$

$$
20=\pi \cdot 16 \frac{d h}{d t}
$$

$$
\frac{20}{16 \pi}=\frac{d h}{d t}
$$

$\left.\frac{d h}{d t}=\frac{5}{4 \pi}\right) \mathrm{in} / \mathrm{sec}$

A spherical Tootsie Roll Pop that you are enjoying is giving up volume at a steady rate of $0.25 \mathrm{in}^{3} / \mathrm{min}$. How fast will the radius be decreasing when the Tootsie Roll Pop is .75 inches across?

Wrice equation- 6 tangent

$$
\begin{aligned}
& \text { line } c(6,-3) \quad x^{2}-y^{2}=27 . \\
& 2 x \cdot \frac{d x}{d x}-2 y \frac{d y}{d x}=0 \\
& 2 x-2 y \frac{d y}{d x}=0 \\
& 2 x=2 y \frac{d y}{d x} \\
& \frac{x}{y}=\frac{d y}{d x} \\
& \frac{6}{-3}=-2 \rightarrow 3(4 e c(6,-3) \\
& y+3=-2(x-6)
\end{aligned}
$$

$$
f(x)= \begin{cases}x^{3}-2 x^{2}+3, & x \geqslant 1 \\ 3-x, & x<1\end{cases}
$$

(1) Det of $f(x)$ is cante $x=1$.
$1^{3}-2 \cdot 1^{2}+3 \stackrel{?}{=} 3-1$
$1-2+3=3-1$
$\therefore(x)$ iscont $e x=1$.
(2) If $y=$, is $f(x)$ differectialte ex $x=1$.

$$
\begin{aligned}
& 3 x^{2}-4 x \quad \lambda^{-1} \\
& 3 \cdot 1^{2}-4 \cdot 1 \quad \text { sloperaen teme from bogingit }
\end{aligned}
$$

$$
\text { Find } \frac{d y}{d x}(x+y)^{2}-4 x=20 y
$$

$$
2(x+y)^{\prime}\left[x^{\prime}+y^{\prime}\right]-4 x^{\prime}=20 y^{\prime}
$$

$$
(2 x+2 y)\left(1+y^{\prime}\right)-4=20 y^{\prime}
$$

$$
2 x+2 x y^{\prime}+2 y+2 y \cdot y^{\prime}-4-20 y^{\prime}=0
$$

$$
y^{\prime}(2 x+2 y-20)=4-2 y-2 x
$$

$$
y^{\prime}=\frac{4-2 y-2 x}{2 x+2 y-20}
$$

$$
y^{\prime}=\frac{2-y-x}{x+y-10}=\frac{-2+y+x}{-x-y+10}
$$

Find a i b to mak $f(x)$ differatichs
$f(x)= \begin{cases}x^{3}+x+2, & x=0 \\ a(x-1)-b, & x<0 \\ 3 x^{2}+1\end{cases}$
$0^{3}+0+2=a(-1)-b$

$$
\begin{gathered}
2=-\frac{a-b}{-b} \\
2=-1-b \\
b=-3
\end{gathered}
$$

