AP Calculus AB

Bellwork:

Tuesday, November 5, 2013
Historical Cunves Assignment
1.
2. 1. Find equation of tongent line cit specific
3. point.
4. 2. Check your work with GGB.
5. 3. Print out a graph with the original curve \mathfrak{F} the tongent line.
4. Paste onto colored paper (I have some).
5. Tape/paste your work onto the back of the paper.
6. I will be displaging thesel

You have to do all five problems.
You will be assigned ONLY ONE to print \mathfrak{F} post.

1. Find the value of a that makes the function continuous.

$$
\text { f. } f(x)=\left\{\begin{array}{l}
a^{2}-x^{2}, x<2 \\
1.5 a x, x \geq 2
\end{array}\right.
$$

$$
a^{2}-2^{2}=1.5 a \cdot 2
$$

$$
a^{2}-4=3 a
$$

$$
a^{2}-3 a-4=0
$$

If $=4$

$$
(a-4)(a+1)=0
$$

$$
\begin{aligned}
& f_{a}=4 \\
& f(x)=\left\{\begin{array}{l}
16-x^{2}, x=2 \\
6 x, x \geq 2
\end{array}\right.
\end{aligned}
$$

$$
a=4 \quad a=-1
$$

Check $a=-1$

$$
f(x)=\left\{\begin{array}{l}
1-x^{2}, x<2 \\
-1.5 x, x \geq 2
\end{array}\right.
$$

Both wok $\rightarrow a=4$: $a=-1$.
2. Bottom of page 6Q. Please do \#T1.
7. Sketch a function having the following attributes.
a) has a value of $f(2)$, a limit as x approaches 2 ,
b. has a step discontinuity at $x=3$ where $f(3)=7$ but is not continuous at $x=2$.
c. $\lim _{x \rightarrow 4} f(x)=-2$ but the function is not
d. the value of $f(-2)=3$ but there is no limit of $f(x)$ continuous at $x=4$.

$1 \$ \rightarrow$ check/make Continuous!
$1^{3}=a(1-2)^{2}+b$
$1=a+b$
nd \rightarrow Differentiable
$3 x^{2}=2 a(x-2)$ when $x=1$
$3 \cdot 1^{2}=2 a(1-2)$
$3=-2 a$
$a=\frac{-3}{2}$
$\begin{gathered}a+b=1 \\ \substack{\frac{-3}{2}+b=\frac{2}{2} \\\left(b=\frac{2}{2}\right)}\end{gathered} f(x)=\left\{\begin{array}{l}x^{3}, x=1 \\ -\frac{3}{2}\left(x, x+\frac{2}{2}+\frac{5}{2}, x^{2} \mid\right.\end{array}\right.$

Example 1) Write the following statements mathematic
a) John is growing at the rate of 3 inches/ year.
c) The radius of a circle is incteasing by $4 \mathrm{ft} / \mathrm{hr} \quad$ d) The volume of a cone is deccreasing by 2 in $3 / \mathrm{sec}$.

$$
\begin{aligned}
& \text { Find } \frac{d C}{d t}: \\
& \frac{C=2 \pi}{d T}=2 \pi \cdot \frac{d t}{d t} \\
& \frac{d C}{d t}=2 \pi \cdot 50 \frac{f t}{m i n} \\
& \frac{d C}{d t}=100 \pi \frac{d x}{m i n}
\end{aligned}
$$

When $\mathbf{g}=12$, find $\mathbf{d y} / \mathbf{d t}$.

When $\mathrm{y}=5$, find $\mathrm{dy} / \mathrm{dt}$.

