AP Calculus AB
Friday, November l, 2013

Bellwork:

Find the slope of the tongent line to $f(x)=|x| d t$ the following points:

1. $x=-2\} \rightarrow m_{\text {tan }}=-1$
2. $x=-1$
3. $\mathbf{x}=0 \longrightarrow$ undefined
$\left.\begin{array}{l}\text { 4. } x=1 \\ \text { 5. } x=2\end{array}\right\} m_{\text {tan }}=1$

1. Historical Curves Assignment

2.
3.
4. ZFind equation of tengent line dt specific point.
5. Check your work with GGB.
6. Print out a graph with the original cunve \mathfrak{F} the tancent line.
7. Paste onto colored paper (I have some).
8. Tape/paste your work onto the back of the paper.
9. I will be displaging thesel

You have to do all finve problems.
You will be assigned ONLY ONE to print g post.

$$
\begin{aligned}
& f(x)=|x| \\
& \lim _{x \rightarrow 0^{-}} f^{\prime}(x)=-1 \\
& \lim _{x \rightarrow 0^{+}} f^{\prime}(x)=1 \\
& \lim _{x \rightarrow 0^{-}} f^{\prime}(x) \neq \lim _{x \rightarrow 0^{+}} f^{\prime}(x)
\end{aligned}
$$

$\therefore f^{\prime}(0)$

What can we conclude about the absolute value function?
continuity \rightarrow Continuous $(-\infty, \infty)$
Differentiability
\rightarrow Can we fake deriv everywhere?
No. $|x|$ is not differentiable $e x=0$.

Know you $A B C D$'s.
In oder for a function to le cifferestable ut a point, it must also be continuous at the point.

differentiability \rightarrow "smooth" curve
How can we determine differentiability by looking at the equation (not the graph)? Comerda

$$
\begin{aligned}
& f(x)=\frac{1}{x} \\
& \text { domain: }(-\infty, 0) \cup(0, \infty)
\end{aligned}
$$

look e domain \rightarrow deriv' 's domain

$$
\sum_{\text {Look confully }}^{\text {C piecewise fandoms }} \boldsymbol{f} f(x)=\left\{\begin{array}{l}
1-x, x<1 \\
x^{2}+2, x \geq 1
\end{array}\right.
$$

$$
\begin{aligned}
& \text { a) } f(x)=\left\{\begin{array}{l}
x^{2}-6 x+10, x z 2 \\
4-x, x<2
\end{array}\right. \\
& f(2)=2^{2}-6 \cdot 2+10 \\
& f(2)=2 \\
& \left.\lim _{x \rightarrow 2^{-}}(4-x)=2\right\} \lim _{x \rightarrow 2} f(x) \text { exists } \\
& \lim _{x \rightarrow 2^{+}}\left(x^{2}-6 x+10\right)=2 \\
& f(2)=\lim _{x \rightarrow 2} f(x)
\end{aligned}
$$

$f(x)$ is continuous $C x=2$.

$$
\begin{aligned}
& f^{\prime}(x)=\left\{\begin{array}{l}
2 x-6, x \geq 2 \\
-1, x<2
\end{array}\right. \\
& \left.\lim _{x \rightarrow 2^{-}} f^{\prime}(x)=-1\right\} \text { The deriv is not } \\
& \lim _{x \rightarrow 2^{-}} f^{\prime}(x)=-2 \quad\left\{\begin{array}{r}
\text { continuous ex }=2 . \\
\text { a } f(x) \text { is not }
\end{array}\right.
\end{aligned}
$$ differentiable $\Theta X=2$.

