AP Calculus AB Friday, November 1, 2013

Bellwork:

Find the slope of the tangent line to f(x) = |x| at the following points:

1.
$$x = -27$$
 $M_{tan} = -1$

2.
$$x = -1$$

4.
$$x = 1$$
 $m_{tan} = 1$

5.
$$x = 2$$

- 1. Historical Curves Assignment
- 2.
- 3.
- 1. Find equation of tangent line at specific point.
- 2. Check your work with GGB.
- 3. Print out a graph with the original curve & the tangent line.
- 4. Paste onto colored paper (I have some).
- 5. Tape/paste your work onto the back of the paper.
- 6. I will be displaying these!

You have to do all five problems. You will be assigned ONLY ONE to print & post.

a)
$$f(x) = \begin{cases} x^2 - 6x + 10, x \ge 2\\ 4 - x, x < 2 \end{cases}$$

$$f(s) = 5$$

 $f(s) = 5$

$$\lim_{x\to 2^{+}} (x^{2}-2) = 2 = \lim_{x\to 2^{+}} f(x) = xists$$

 $\lim_{x\to 2^{+}} (x^{2}-6x+10) = 2 = 2$

$$f'(x) = \begin{cases} -1, & x < 2 \end{cases}$$

$$\lim_{x\to 2} f'(x) = -2$$

lim f'(x) = -1 $t \Rightarrow 2^ t \Rightarrow 2^-$ The deriv is not continuous ex = 2. $t \Rightarrow 2^ t \Rightarrow 2^-$

differentiable @X=2.

Is this function continuous at x = -1?

