7. $f(x)=x-\tan x \quad\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$

$$
\begin{aligned}
& f^{\prime}(x)=1-\sec ^{2} x \\
& 1-\sec ^{2} x=0 \\
& \sec ^{2} x=1 \\
& \sec x=1 \quad \sec x=-1 \\
& \cos x=1 \quad \cos x=-1 \\
& x=0
\end{aligned} \quad \text { not on }\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]
$$

The absolute maximum is $/-\frac{\pi}{4}$:crus at $x=\frac{-\pi}{4}$. The absolute minimum is $\frac{\pi}{4}-1 \dot{i}$ occurs e $x=\pi / 4$.

$$
\begin{aligned}
& g(x)=|u| \\
& g^{\prime}(x)=\frac{u \cdot u^{\prime}}{|u|}
\end{aligned}
$$

9. What is the smallest possible slope to
$y=x^{3}-3 x^{2}+5 x-1$
This is asking for the absolute minimum of the derivative (slope).

$$
\begin{gathered}
\rightarrow y^{\prime}=3 x^{2}-6 x+5 \\
y^{\prime \prime}=6 x-6 \\
6 x-6=0 \\
x=1
\end{gathered}
$$

At $x=1$, the derivative reacher a minamium because the 2 alderiv ges from megative to positive. The minumum slope is $2 .\left(3(1)^{2}-6 \cdot 1+5=2\right)$.
10. If a particle moves along a straight line according to $s(t)=t^{4}-4 t^{3}+6 t^{2}-20$, find
a) the maximum \& minimum velocity on $0 \leq t \leq 3$.
b) the maximum \& minimum acceleration on $0 \leq t \leq 3$
$v(t)=4 t^{3}-12 t^{2}+12 t$
We need to find abs max s. min of $v(t)$.
$\nu^{\prime}(t)=12 t^{2}-24 t+12$
$12\left(t^{2}-2 t+1\right)=0$
$12(t-1)(t-1)=0$
$t=1$

$\nu^{\prime}(t)=12 t^{2}-24 t+12$
$a(t)=12 t^{2}-24 t+12$
Find abs max \& min accel.
$a^{\prime}(t)=24 t-24$
$24 t-24=0$
$12(t-1)^{2}$
$t a(t)=12\left(t^{2}-2 t+1\right)$

012

1	0
3	$12(4)=48$

$3 \mid 2(4)=48$ 48 toccelus whent $=3$ The thinacal is 0 ? occust $t=1$.

Find two positive numbers that minimize the sum of twice the first number plus the second if the product of the two numbers is 288 .	
Use calculus in your solution.	
Let a \&b be our twob numbers	
$a \underset{b=288 / a}{b}=288$	
$2 a+b \rightarrow$ minimige	
$f(9)=2 a+288 a^{-1}$	
$f^{\prime}(a)=2-288 a^{-2}$	
$2-288 a^{-2}=0$	
$\frac{288}{a^{2}}=\frac{2}{1}$	
$\begin{aligned} 2 a^{2} & =288 \\ a^{2} & =144 \end{aligned}$	
$\left.\frac{288}{169} a=12,-1\right) ?$ "positive numbers"	
Verifylcheck that $a=12$ produces amin	
sme $f^{\prime}(a)$ goes from $-t+e(2$,	
$f(a)$ hat a relatore min $e a=12$.	
$b=\frac{288}{12}=24$	

