AP Calculus AB
Monday, November 25, 2013
EMEH in here today \& tomorrow.

$$
f(x)=\sqrt{1-x^{2}}
$$

Find $f(x)$
$f(x)=\left(1-x^{2}\right)^{2 n}$
$f(x)=1 / 2\left(1-x^{2}\right)(-2 x)$
$f(x)=\frac{-2 x}{2 \sqrt{T^{2}}}$
$f(x)=\frac{x}{x}$
$-x$
$\pm \sqrt{\frac{1}{2}}$
$\pm 0,7071$.

$$
\begin{aligned}
& -x=-1 \sqrt{1-x^{2}} \\
& x^{2}=\sqrt{1-x^{2}} \\
& x^{2}=1-x^{2} \\
& 2 x^{2}=1 \\
& x^{2}=1 \\
& x= \pm \sqrt{2}
\end{aligned}
$$

(6 points) 2. Find all the values of c on the closed interval [$[0,1]$ that satisfy the Mean Value Theorem for $f(x)=$

$$
\begin{aligned}
& f(x)=3 x^{2}-24 x-1 \quad[-1,5] \\
& f^{\prime}(x)=6 x-24 \\
& 6 x-24=0 \\
& x=4
\end{aligned}
$$

x	$f(x)=3 x^{2}-24 x-1$
and	$31+24-1=26$
satinet 4	$3.6-96-1=-49$
and 5	$325-24.5-1=-46$

The absolute maximum on $[-1,5]$ is 26 and occurewhen $x=-1$.
The absolute minimum is -4.9 and occurs when $x=4$.

$$
\begin{aligned}
& \text { (c) } f(x)=3 x^{2 / 3}-2 x+1 \quad[-1,8] \\
& f^{\prime}(x)=2 x^{-1 / 3}-2 \\
& 2 x^{-1 / 3}-2=0 \\
& x^{-1 / 3}=1 \\
& \frac{1}{\sqrt[3]{x}}=1 \\
& x=1
\end{aligned}
$$

CValso occur where $f^{\prime}(x)$ is undefined.

The absolute maximum 6 ㅇccus when $x=-1$. The de. min. is -3 socows when $x=8$.

$$
\text { (2) } h^{\prime}(x)=\frac{x^{2}-2}{x} \quad x \neq 0 \quad h(4)=-3
$$

(a)

$$
\begin{array}{rr}
h^{\prime}(x)=0 \\
x^{2}-2=0 \quad x=0 \text { is still a } \\
x= \pm \sqrt{2} & \text { critical value }
\end{array}
$$

$h^{\prime}(x)=\frac{x^{2}-2}{x}$

h hat a local minimum e $x=-\sqrt{2}$ because
$h^{\prime}(x)$ goes from negatwic to positive $e x=-\sqrt{2}$.
h has anther lo col minimain $Q \quad x=\sqrt{2}$ be
$h^{\prime}(x)$ goes from negative to positive $e x=\sqrt{2}$.
h does not have a local maximum at $x=0$ because $h(x)$ is not defined at $x=0$.
(b) $h^{\prime}(x)=\frac{x^{2}-2}{x}$

$$
h^{\prime \prime}(x)=\frac{x(2 x)-\left(x^{2}-2\right)(1)}{x^{2}}
$$

$$
h^{\prime \prime}(x)=\frac{2 x^{2}-x^{2}+2}{x^{2}}
$$

$$
h^{\prime \prime}(x)=\frac{x^{2}+2}{x^{2}}
$$

$$
h^{\prime \prime}(x)=0 ?
$$

$$
x^{2}+2 \neq 0
$$

$$
x^{2} \neq 0 \rightarrow x=0
$$

$f^{\prime \prime}(x)$:

\sin ce $h^{\prime \prime}(x)$ is always >0 (where it exists) $h(x)$ is a (ways concave up.
(c) $h(4)=-3$

$$
h^{\prime}(x)=\frac{x^{2}-2}{x}
$$

$$
h^{\prime}(4)=\frac{16-2}{4}=\frac{7}{2}
$$

$$
y+3=\frac{7}{2}(x-4)
$$

(d) $\sin a h(x)$ is concave up, the tangent bine will lie below the curve.
d. $f(x)=\sin ^{2} x+\cos x \quad[0,2 \pi]$

$$
\begin{aligned}
& f^{\prime}(x)=2 \sin x \cdot \cos x-\sin x \\
& \sigma=2 \sin x \cdot \cos x-\sin x
\end{aligned}
$$

$$
0=(2 \cos x-1) \sin x
$$

The absoluteminimumoccurs@x=and is - 1 . The absolute maxima occur @ $x=\frac{\pi}{3} 8 x=\frac{5 \pi}{3}$ and are $\frac{5}{4}$.

$$
\begin{aligned}
& 2 \cos x_{-1} 1=0 \quad \sin x=0 \\
& \cos x=\frac{1}{2} \quad 0, \pi, 2 \pi \\
& \frac{\pi}{3}, \frac{5 \pi}{3} \begin{array}{l|l|l}
x & f(x)=\sin ^{2} x+\cos x \\
& 0 & 1 \\
\frac{\pi}{3} & \frac{5}{4} \\
\frac{5 \pi}{4} & -1 \\
\frac{5 \pi}{3} & \frac{5}{4} \\
2 \pi & 1
\end{array}
\end{aligned}
$$

