AP Calculus AB
Tuesday, November 19, 2013
For each function, find the value that satisfies the MVI on the given interval. Check by graphing.

$$
f(x)=x^{2}-5 x+7,-1 \leq x \leq 3
$$

$$
\begin{gathered}
m_{\text {sec }}=\frac{f(3)-f(-1)}{3--1}=\frac{9-15+7-(1+5+7)}{4} \\
m_{\text {sec }}=-3 \\
f^{\prime}(x)=2 x-5 \\
2 x-5=-3 \\
x=1 \\
f(1)=1^{2}-5 \cdot 1+7=3 \\
f^{\prime}(1)=2 \cdot 1-5=-3
\end{gathered}
$$

Eon of tangent line $y-3=-3(x-1)$

$$
f(x)=x \cos (\sqrt{x}), 0 \leq x \leq 50
$$

Continuous?

$x \rightarrow$ cont $\dot{\text { sidiff. everywhere }}$
\sqrt{x}
Domain: $[0, \infty)$
Continuous on

domain V
Diff: on $(0, \infty) \vee$
cosine is contrivinat alodifferentiabler
\therefore We can use MVT.

$$
m_{\sec }=\frac{f(50)-f(0)}{50-0}
$$

$$
m_{\sec }=\frac{50 \cos \sqrt{50}}{50}
$$

$$
m_{s e c}=\cos \sqrt{5 D}
$$

Radians

$$
\begin{aligned}
& f(x)=x \cos \sqrt{x} \\
& f^{\prime}(x)=x[-\sin \sqrt{x}]\left[\frac{1}{2} x^{-h}\right]+\cos \sqrt{x}
\end{aligned}
$$

$$
f^{\prime}(x)=\frac{-x^{\prime} \sin \sqrt{x}}{2 \sqrt{x}}+\cos \sqrt{x}
$$

$$
f^{\prime}(x)=\frac{-x^{1 / 2} \sin \sqrt{x}}{2}+\cos \sqrt{x}
$$

$$
f^{\prime}(x)=\frac{-\sqrt{x} \sin \sqrt{x}}{2}+\cos \sqrt{x}
$$

$$
\frac{-\sqrt{x} \sin \sqrt{x}}{2}+\cos \sqrt{x}=\cos \sqrt{50}
$$

$$
\text { Solve for } x
$$

It is not possible to use analytical techniques to solve this. We must solve by graphing.

