AP Calcolus AB

Tuesday, October 3, 2013

Quiz Thursday over Trig Derivatives \mathfrak{F} Function Analysis: 30 minvtes

Now, find points of inflection \& describe
the concavity of $f(x)$.

$$
\begin{aligned}
& f(x)=-\cos x-\frac{1}{2} x \\
& f^{\prime}(x)=\sin x-\frac{1}{2}
\end{aligned}
$$

$$
f^{\prime \prime}(x)=\cos x
$$

$$
\cos x=0 \quad[0,2 \pi]
$$

$$
x=\frac{\pi}{2}, \frac{3 \pi}{2}
$$

$f^{\prime}(x)=\cos x$

Since $f^{\prime \prime}(x)$ changes signs at $x=\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}, f(x)$ has points of inflection at
$x=\frac{\pi}{2}$ and $x=\frac{3 \pi}{2}$. Also be cause $f^{\prime \prime}(x)>0$
on $\left(0, \frac{\pi}{2}\right)$ and $\left(\frac{3 \pi}{2}, 2 \pi\right), f(x)$ is concaveup
on $\left(0, \frac{\pi}{2}\right)$ and $\left(\frac{3 \pi}{2}, 2 \pi\right)$. $f^{\prime \prime}(x)<0$ on $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
thenfore, $f(x)$ is concave down on
$\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$

$$
\begin{aligned}
& s(t) \text { position } \\
& s^{\prime}(t) \text { velocity } \\
& s^{\prime \prime}(t) \text { accebation }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tinnebtivextrema } \\
& \text { d. } f(x)=-\cos x-\frac{1}{2} x \text { on }[0,2 \pi] \\
& \text { - } f^{\prime}(x)=-1(-\sin x)-\frac{1}{2} \\
& f^{\prime}(x)=\sin x-\frac{1}{2} \\
& \sin x-\frac{1}{2}=0 \\
& \sin x=\frac{1}{2} \text { on }[0,2 \pi] \\
& x=\frac{\pi}{6}, \frac{5 \pi}{6} \\
& f^{\prime}(x)=\sin x-\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \square \\
& \text { since } f^{\prime}(x) \text { goes from negative to positive } \\
& \text { C } x=\pi / 6, f(x) \text { has a rulativ Minimum } \in x=\frac{\pi}{6} \\
& \text { Since } f^{\prime}(x) \text { goes from positive to negative at } \\
& x=\frac{5 \pi}{6}, f(x) \text { how a relative maximum } \\
& \text { at } x=\frac{5 \pi}{6} \text {. } \\
& \text { The prelature munumum is } \\
& \begin{aligned}
f\left(\frac{\pi}{6}\right) & =-\cos \frac{\pi}{6}-\frac{1}{2}\left(\frac{\pi}{6}\right) \\
& =-\frac{\sqrt{3}}{2}-\frac{\pi}{12}
\end{aligned} \\
& \text { Therelative maximum is } \\
& f\left(\frac{5 \pi}{6}\right)=-\cos \frac{5 \pi}{6}-\frac{1}{2}\left(\frac{5 \pi}{6}\right) \\
& =-\left(-\frac{\sqrt{3}}{2}\right)-\frac{5 \pi}{12} \\
& =\frac{\sqrt{3}}{2}-\frac{5 \pi}{12}
\end{aligned}
$$

File Edit View Options Tools Window Help

When the second derivative is positive, the original function is concave UP.

When the second derivative is negative, the original function is concave DOWN.

If a curve changes concavity, there is a point of inflection. There is a point of inflection at the place where the second derivative changes signs.

The first derivative finds relative extrema and tells us where the function is increasing or decreasing.
The second derivative finds points of inflection and describes the concavity of the original function.

