AP Calculus AB
 Monday, October 1, 2013

Example 2) You are given a graph of $f(x)$. Draw a picture of a possible $f(x)$

Find the interycil(s) on which $\mathrm{f}(\mathrm{x})$ is increasing and/or decreasing.

$$
\text { a) } f(x)=x^{3}-3 x^{2}
$$

$$
\begin{gathered}
f^{\prime}(x)=3 x^{2}-6 x \\
3 x^{2}-6 x=0 \\
3 x(x-2)=0 \\
x=0 \quad x=2
\end{gathered}
$$

$f^{\prime}(x)$:

$f^{\prime}(-1)=3(-1)^{2}-6(-1)$
$f^{\prime}(-1)=9$
$f(3)=27-18$
$f(1)=3-6$

$$
\begin{aligned}
& \text { since } f^{\prime}(x)<0 \text { on }(0,2), f(x) \text { is decreasing } \\
& \text { on }(0,2) \text {. Since } f^{\prime}(x)>0 \text { on }(-\infty, 0) \cup(2, \infty) \text {, } \\
& f(x) \text { is increasing on }(-\infty, 0) \cup(2, \infty) \text {. }
\end{aligned}
$$

When the derivative changes from positive to negative, the function has a relative (local) MAXINOM. When the derivative changes from negative to positive, the function has a relative (local) MINIMOM.

Find all relative extrema of $f(x)$.
a) $f(x)=x^{3}-3 x^{2}$
$f^{\prime}(x)=3 x^{2}-6 x$
Above ws had
$f^{\prime}(x)$:

Since $f^{\prime}(x)$ goes from positive to negative at $x=0, f(x)$ has a relatwie maxim um at $x=0$.

The maximum value is $f(0)=0$.
OR : The relatue maximum occurec $(0,0)$.
Since $f^{\prime}(x)$ goes from negative to positive at $x=2, f(x)$ ho a reloter minimum $e x=2$
The relatwe minimin is $f(z)=2^{3}-3 \cdot 2^{2}$
OR The relative minimunt
$f(2)=-4$.
occuse $(2,-4)$

You try:

Find all relative maximum or minimum:

$$
\begin{aligned}
& f(x)=4 x^{n} 3-x^{n} 4 \\
& f(x)=4 x^{3}-x^{4} \\
& \hline s_{0} \ln \\
& f^{\prime}(x)=12 x^{2}-4 x^{3} \\
& f^{\prime}(x)=0 \\
& 12 x^{2}-4 x^{3}=0 \\
& 4 x^{2}(3-x)=0 \\
& x=0 \quad x=3 \\
& f^{\prime}(x)=12 x^{2}-4 x^{3}+1 \\
& +1 \\
& 0 \quad 3
\end{aligned}
$$

Because $f^{\prime}(x)$ goes from post we to ngeghens. © $x=3, f(x)$ has a ulativ maximum $e x=3$.
The reltuce maximum is $f(3)=4 \cdot 3^{3}-3^{4}$

$$
f(3)=108-81=27
$$

