APCalculusAB Friday,October5,2012

Bellwork...ontheboard

Homework...keep working on the two packets I've given you this week.

Rellwork

- 1. Calculate y' if $y = x^2 \sin(\pi x)$.
- 2. If g(x) is a differentiable function and $f(x) = \frac{1}{g(x)}$, write f'(x) in terms of g(x) and g'(x).
- 3. Let g(x) be a differentiable function such that $g(1)=\pi$ and g'(1)=2. Find an equation for the tangent line to the curve $y=\cos(g(x))$ at the point where the x-coordinate is 1.

$$\begin{array}{ll}
\text{(I)} & y = x^{2} \cdot \sin(\pi x) \\
y' = (\sin(\pi x) \cdot 2x + x^{2} (\cos(\pi x) \cdot \pi)) \\
y' = 2x \cdot \sin(\pi x) + \pi x^{2} \cdot \cos(\pi x)
\end{array}$$

$$\begin{array}{ll}
\text{(2)} & f(x) = \frac{1}{g(x)} \\
f'(x) = g(x) \cdot 0 - 1 \cdot g'(x) \\
\hline
\left[g(x)\right]^{2}
\end{array}$$

$$f'(x) = \frac{-g'(x)}{[g(x)]^{2}}$$

3. Let g(x) be a differentiable function such that $g(1) = \pi$ and g'(1) = 2. Find an equation for the tangent line to the curve $y = \cos(g(x))$ at the point where the x-coordinate is 1.

y=cos(g(x))
$$g'(x)$$

y'=-sin(g(x)) $g'(x)$

y'ex=1=-sin($g(x)$) $g'(x)$

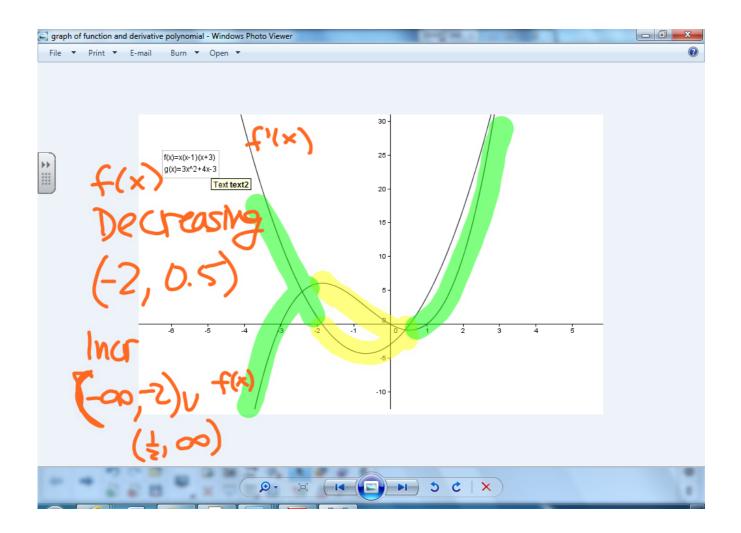
=(sint) $g'(x)$

slopee

x=1 $g'(x)$

Given $g'(x)$

y=cos($g'(x)$)


y=-1

(1,-1) point on y

sign obtangat line

y+1=0(x-1)

y=-1

