AP Calculus AB
Wednesday, October 31, 2012

Today's Essential Question: How do I solve related rates problems?

HW...related rates packet

Formative Quiz at the beginning of class

3. The circumference of a circle is increasing at a rate of $\frac{2 \pi}{5}$ inches per minute. When the radius is 5 inches, how fast is the area of the circle increasing? Be sure to include units in your final answer.

$$
\frac{d C}{d t}=\frac{2 \pi}{5} \text { in } / \mathrm{min} \quad r=\sin \quad \frac{d t}{d t}=?
$$

Solution: $C=2 \pi r$

$$
\begin{aligned}
& A=\pi r^{2} \\
& \frac{d A}{d t}=2 \pi r \cdot \frac{d x}{d t}
\end{aligned}
$$

$\frac{d C}{d t}=2 \pi \cdot \frac{d r}{d t}$

$$
\begin{aligned}
& \frac{2 \pi}{5}=2 \pi \cdot \frac{d r}{d t} \\
& \frac{d r}{d t}=\frac{1}{5} \mathrm{in} / \mathrm{min}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d A}{d t}=2 \pi \cdot 5 \cdot \frac{1}{5} \\
& \frac{d A}{d t}=2 \pi \frac{\mathrm{~m}^{2}}{\mathrm{~min}}
\end{aligned}
$$

Example 10) Water is draining from a conical tank at the rate of $2 \mathrm{~meter}^{3} / \mathrm{min}$. The tank is 16 meters high and its top radius is 4 meters. How fast is the water level falling when the water level is a) 12 meters high,
b) 2 meters high?

$$
\frac{d V}{d t}=-2 \frac{m^{3}}{\mathrm{~min}}
$$

Find $\frac{d h}{d t}$ when $h=12 \mathrm{~m}$

$$
\begin{aligned}
& V=\frac{1}{3} \pi^{2} h \\
& \left.\frac{d V}{d t}=\frac{1}{3} \pi r^{2} \frac{d h}{d t}+h \cdot 2 r \frac{d r}{d t}\right]
\end{aligned}
$$

What is r?
What is $\frac{d r}{d t}$?

$$
\begin{aligned}
& -2=\frac{1}{3} \pi\left[\frac{d h}{d t}+12 \cdot 6 \cdot \frac{1}{4} \frac{d h}{d t}\right] \\
& -2=\frac{1}{3} \pi\left[27 \frac{d h}{d t}\right] \\
& -2=9 \pi \frac{d h}{d t} \\
& -\frac{2}{9 \pi} \frac{m}{\min }=\frac{d h}{d t}
\end{aligned}
$$

$$
\frac{r}{h}=\frac{1}{4}
$$

$$
r=\frac{1}{4} h
$$

3) Two cars are riding on roads that meet at a 60 degree angle. Car A is 3 miles from the intersection traveling at 40 mph and car B is 2 miles away from the intersection traveling at 50 mph . How fast are the two cars separating if a) they are both traveling away from the intersection and b) car A is traveling away from the intersection and car B is traveling towards it?

Find $\frac{d c}{d t}$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos 60^{\circ} \\
& c^{2}=a^{2}+b^{2}-a b
\end{aligned}
$$

$\overline{a t}$

$$
2 c \cdot \frac{d c}{d t}=2 a \cdot \frac{d a}{d t}+2 b \cdot \frac{d b}{d t}-\left(a \frac{d b}{d t}+b \cdot \frac{d a}{d t}\right)
$$

