AP Calculus AB

Wednesday, October 30, 2013

> HalloweenActivity

Bellwork:CheckanswerstoHWwithsomeone. Writethenumberofany"problem"problemson theboard.
$\frac{d y}{d x}=\frac{1-3 x^{2} y}{x^{3}-1}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y+1}{1-x} \\
& \frac{d^{2} y}{d x^{2}}=\frac{2 y+2}{(1-x)^{2}}
\end{aligned}
$$

(15)

$$
\frac{d y}{d x}=\frac{4-2 x}{8 y+16}
$$

horizontal
vertical
$(2,0),(2,-4)$
$(6,-2),(-2,-2)$

$$
\begin{aligned}
& \text { (5) } x^{2} y-x y^{2}=-6 \quad \text { Find } \frac{d y}{d x} e(2,-1) \text {. } \\
& x^{2} y^{\prime}+y \cdot-2 x \cdot x^{3}-\left[x \cdot 2 y \cdot y^{2}+y^{2} \cdot x^{2}\right]=0 \\
& x^{2} y^{\prime}+2 x y-2 x y \cdot y^{\prime}-y^{2}=0 \\
& y^{\prime}\left(x^{2}-2 x y\right)=y^{2}-2 x y \\
& y^{\prime}=\frac{y^{2}-2 x y}{x^{2}-2 x y} \\
& \left.y^{\prime}\right|_{(2,-1)}=\frac{(-1)^{2}-2 \cdot 2(-1)}{2^{2}-2 \cdot 2(-1)} \\
& \left.y^{\prime}\right|_{((,-1)}=\frac{1+4}{4+4}=\frac{5}{8} \\
& \text { (7) } \sqrt{x y}=x-\partial y \quad e(4,1) \\
& (x y)^{1 / 2}=x-2 y \\
& \frac{1}{2}(x y)^{-1 / 2}\left(x y^{\prime}+y x\right)=x^{\prime}-2 y^{\prime} \\
& \frac{x y^{\prime}+y}{2 \sqrt{x y}}=\frac{1-2 y^{\prime}}{1} \\
& x y^{\prime}+y=2 \sqrt{x y}\left(1-2 y^{\prime}\right) \\
& x y^{\prime}+y=2 \sqrt{x y}-4 y^{\prime} \sqrt{x y} \\
& x y^{\prime}+4 y \cdot \sqrt{x y}=2 \sqrt{x y}-y \\
& y^{\prime}(x+4 \sqrt{x y})=2 \sqrt{x y}-y \\
& y^{\prime}=\frac{2 \sqrt{x y}-y}{x+4 \sqrt{\sqrt{x}}} \\
& y^{\prime} 巴(4,1)=\frac{2 \sqrt{4 \cdot 1}-1}{4+4 \sqrt{4 \cdot 1}} \\
& =\frac{3}{12}=\frac{1}{4}
\end{aligned}
$$

$$
\begin{aligned}
& x^{3} y-y=x \\
& x^{3} y^{\prime}+y^{3} \cdot 3 x^{2} \cdot x^{\prime}-y^{2}=x^{\prime} \quad 5-3=2 \\
& x^{3} y^{\prime}+3-5 x^{2} y-y^{\prime}=1 \\
& y^{\prime}\left(x^{3}-1\right)=1-3 x^{2} y \\
& y^{\prime}=\frac{1-3 x^{2} y}{x^{3}-1} \text { or } \frac{3 x^{2} y-1}{1-x^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (13) } \begin{array}{l}
1-x y=x-y \\
-\left[x y^{\prime}+y^{\prime} x=x^{\prime}-y^{\prime}\right. \\
-x y^{\prime}-y=1-y^{\prime} \\
y^{\prime}-x y^{\prime}=y+1 \\
y^{\prime}(1-x)=y+1 \\
y^{\prime}=\frac{y+1}{1-x} \\
y^{\prime \prime}=\frac{(1-x)\left(y^{\prime}\right)-(y+1)\left(-x^{\prime}\right)}{(1-x)^{2}} \\
y^{\prime \prime}=\frac{(y)(1-x)-(y+1)(-1)}{(1-x)^{2}} \\
y^{\prime \prime}=\frac{\left(\frac{(1+1}{1-x}\right)(1-x)+y+1}{(1-x)^{2}} \\
y^{\prime \prime}=\frac{y+1+y+1}{(1-x)^{2}} \\
y^{\prime \prime}=\frac{2 y+2}{(1-x)^{2}}
\end{array}
\end{aligned}
$$

$$
\text { (15) } x^{2}+4 y^{2}-4 x+16 y+4=0
$$

$$
\begin{aligned}
& 2 x+8 y \cdot y-4+16 y^{\prime}=0 \\
& y^{\prime}(8 y+16)=4-2 x \\
& y^{\prime}=\frac{4-2 x}{8 y+16} \\
& y^{\prime}=\frac{2-x}{4 y+8} \longrightarrow \begin{array}{c}
\text { horj tan line } \\
2-x=0
\end{array}
\end{aligned}
$$

$$
\frac{H T L}{x=2} \quad \frac{V T L}{y=-2}
$$

Vertical tanlive $4 y+8=0$

Go back to orig. egn to fird points.
\#TL:

$$
\begin{aligned}
& 2^{2}+4 y^{2}-42+16 y+4=0 \\
& 4 y^{2}+16 y=0 \\
& 4 y(y+4)=0 \\
& y=0 \quad y=-4 \\
& (2,0)(2,-4)
\end{aligned}
$$

VTL

$$
\begin{gathered}
x^{2}+4(-2)^{2}-4 x+16(-2)+4=0 \\
x^{2}+16-4 x-32+4=0 \\
x^{2}-4 x-12=0 \\
(x-6)(x+2)=0 \\
x=6 \quad x=-2 \\
(6,-2) \quad(-2,-2)
\end{gathered}
$$

