Bellwork:
AP Calculus AB
Tuesday, October 29, 201
Find the equation of the tangent line to $\sqrt{x}+\sqrt{y}-1=y$ at $(9,4)$

$$
\begin{aligned}
& y=\theta^{3} \\
& y=(e x) \\
& y^{\prime}=3 x^{2} \frac{d x}{d x} \\
& y^{\prime}=3(e x)^{2} \cdot e \\
& \frac{d y}{d x}=3 x^{2} \\
& \text { (ODDS I Implicit } \\
& \text { Diff. Homework) } \\
& \frac{d}{d x}\left[x^{2} y+x y^{2}=2 x\right] \quad e(1,1) \\
& x^{2} \cdot y^{\prime}+y \cdot 2 x \cdot x^{\prime}+x \cdot 2 \cdot 2 \cdot y^{\prime}+y^{2} \cdot x=2 x^{\prime} \\
& \underline{x^{2} y^{\prime}}+2 x y+2 x y y^{\prime}+y^{2}=2 \\
& y^{\prime}\left(x^{2}+2 x y\right)=-2 x y-y^{2}+2 \\
& y^{\prime}=\frac{-2 x y-y^{2}+2}{x^{2}+2 x y} \\
& \text { c }(1,1) \\
& y^{\prime}=\frac{-2-1+2}{1+2}=\frac{-1}{3} \\
& \text { slope e }(1,1) \text { is }-\frac{1}{3} \text {. } \\
& y-1=-\frac{1}{3}(x-1) \\
& y-1=-\frac{1}{3} x+\frac{1}{3} \\
& y=\frac{-1}{3} x+\frac{4}{3}
\end{aligned}
$$

Example 4) Find $\frac{d y}{d x}$ for $y+\sqrt{x y}=2$ at $(2,2)$

$$
\begin{array}{ll}
(x y)^{1 / 2} & \frac{d y}{d x}+\frac{1}{2 \sqrt{x y}}\left(x \frac{d y}{d x}+y\right)=0 \\
\frac{1}{2}(x y)^{-1 / 2}\left(x y^{\prime}+y\right) & \frac{d y}{d x}+\frac{1}{4}\left(2 \frac{d y}{d x}+2\right)=0 \\
\frac{d y}{d x}+\frac{1}{2} \frac{d y}{d x}=-\frac{1}{2} \\
2 \sqrt{x y}\left(x y^{\prime}+y\right) & \frac{d y}{d x}=\frac{-1}{3}
\end{array}
$$

Example 5) Find $\frac{d y}{d x}$ for $(x+y)^{2}+y=2$ at $(0,1)$

$$
\begin{aligned}
& 2(x+y)\left(x+\frac{a}{x}+\frac{1}{x}+\frac{x^{2}}{x^{-}}-0 \quad(x+y)^{2}+y=2\right. \\
& 2+2 \frac{d y}{d x}+\frac{d y}{d x}=0 \\
& \operatorname{cix}_{\frac{1}{x}-\frac{2}{3}}^{2 x-2} 2\left(x+y^{\prime}\left(1+y^{\prime}\right)+y^{\prime}=0\right.
\end{aligned}
$$

$$
\begin{aligned}
& \sin (x)=1 \\
& \begin{array}{c}
\cos (y)\left(x \frac{d y y}{x}+x\right)=- \\
x+2 y+2 x y^{\prime}+2 y y^{\prime}+y^{\prime}=0 \\
\frac{x}{d x+y=0} \\
\frac{d x}{d x}-\frac{y}{x} \\
y^{\prime}(2 x+2 y+1)=-2 x-2 y \\
y^{\prime}=\frac{-2 x-2 y}{2 x+2 y+1} \\
e(0,1): y^{\prime}=\frac{-2}{3}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example 6) Find } \frac{d y}{d x} \text { for } x^{2}+4 y^{2}=4 \text { at }(2,0) \\
& \qquad \begin{array}{l}
x^{2}+4 y^{2}=4 \text { at }(2,0) \\
2 x+8 y \frac{d y}{d x}=0 \\
4+0 \frac{d y}{d x}=0 \\
\frac{d y}{d x} \text { DNE }
\end{array}
\end{aligned}
$$

