AP Calculus AB
Thursday, October 25, 2012

Example 9) Find the equation of the tangent line to

$$
\begin{aligned}
& (x)^{1 / 2}+y^{1 / 2}-1=y \\
& \frac{1}{2} x^{-1 / 2} \cdot \frac{d x}{d x}+\frac{1}{2} y^{-1 / 2} \cdot \frac{d y}{d x}=\frac{d y}{d x} \\
& \frac{1}{2} x^{-1 / 2}=\frac{d y}{d x}-\frac{1}{2} y^{-1 / 2} \frac{d y}{d x} \\
& \frac{1}{2} x^{-1 / 2}=\frac{d y}{d x}\left(1-\frac{1}{2} y^{-1 / 2}\right) \\
& \frac{\frac{1}{2} x^{-1 / 2}}{1-\frac{1}{2} y^{-1 / 2}}=\frac{d y}{d x} \\
& (9,4) \\
& \frac{\frac{1}{2}(9)^{-1 / 2}}{1-\frac{1}{2}(4)^{-1 / 2}}=\frac{d y}{d x} \\
& \frac{\frac{1}{2} \cdot \frac{1}{3}}{1-\frac{1}{2} \cdot \frac{1}{2}}= \\
& \frac{1}{6} \\
& \frac{3}{4} \\
& \frac{1}{6} \cdot \frac{4}{3} \\
& \frac{2}{9} \\
& y-4=\frac{2}{9}(x-9)
\end{aligned}
$$

Example 8) Given $x^{2}+y^{2}=100$, find $\frac{d^{2} y}{d x^{2}}$

$$
\begin{array}{r}
2 x \frac{d x}{d x}+2 y \frac{d y}{d x}=0 \\
2 x+2 y \frac{d y}{d x}=0 \\
\frac{d y}{d x}=\left(\frac{-x}{y}\right) \\
\frac{d^{2} y}{d x^{2}}=\frac{y \cdot \frac{d x}{d x}-(-x)\left(\frac{d y}{d x}\right)}{y^{2}} \\
\frac{d^{2} y}{d x^{2}}=\frac{-y+x\left(\frac{-x}{y}\right)}{y^{2}} \\
\frac{d^{2} y}{d x^{2}}=\frac{-y-\frac{x^{2}}{y}}{y^{2}} \\
=\frac{-y^{2}-x^{2}}{y} \\
=\frac{-y^{2}-x^{2}}{y^{3}}
\end{array}
$$

