Bellwork: Find the equation of the tangent line of $x^{\wedge} 2+y^{\wedge} 2=36$ at $x=2$. Include a sketch of the curve \& the tangent line.

Today's Essential Question: How and when do 1
perform implicit differentiation?
Finding derivative without solving for y first.

$$
\begin{array}{lll}
f(x)=x^{2} & \text { \& } & x=2 \\
f^{\prime}(x)=2 x & f(2)=4 \\
f^{\prime}(2)=4 & \text { aslope } & y-4=4(x-2)
\end{array}
$$

Bellwak: $x^{2}+y^{2}=36$

$$
\begin{aligned}
& y^{2}=36-x^{2} \\
& y=\sqrt{36-x^{2}} \text { and }-\sqrt{36-x^{2}}
\end{aligned}
$$

Find y' to find slope
$y=\left(36-x^{2}\right)^{1 / 2}$
$y^{\prime}=\frac{1}{2}\left(36-x^{2}\right)^{-1 / 2}(-2 x)$
$y^{\prime}=\frac{-x}{\sqrt{36-x^{2}}}$$\quad \begin{aligned} & y=-\left(36-x^{2}\right)^{1 / 2} \\ & y^{\prime}=\frac{x}{\sqrt{36-x^{2}}}\end{aligned}$

$$
\begin{aligned}
& x^{2}+y^{2}=36 \\
& z^{2}+y^{2}=36
\end{aligned} \quad \begin{aligned}
& \text { wovalus: } \\
& (2, \sqrt{32})
\end{aligned}(2,-\sqrt{32})
$$

$$
\begin{aligned}
& y^{2}=32 \\
& y= \pm \sqrt{32}
\end{aligned}
$$

 $y-\sqrt{52}=\frac{-2}{\sqrt{2}}(x-2)\left\{y+\sqrt{3}=\frac{2}{\sqrt{3}}(x-2)\right.$

$$
\frac{\text { Circuit }}{360^{\circ}}=\frac{\text { arclensth }}{\text { central } 4}
$$

$x^{2}+y^{2}=36 \quad$ Find deriv.
$2 x \cdot \frac{d x}{d x}+2 y \cdot \frac{d y}{d x}=0$
with respedtox.

$$
2 x+2 y \cdot \frac{d y}{d x}=0
$$

Solve for $\frac{d y}{d x}$.

$$
z_{y} \frac{d y}{d x}=-2 x
$$

$$
\frac{d y}{d x}=\frac{-x}{y}
$$

Slope e $x=2$?
We already found y

$$
\left.\frac{d y}{d x}\right|_{x=2}=\frac{-2}{\sqrt{32}}
$$

$$
(2, \sqrt{32})
$$

Ex. Find $\frac{d y}{d x}$ for $x y+y=8 \quad e(2,3)$.
Solution:

$$
x \frac{d y}{d x}+y \cdot \frac{d x}{d x}+\frac{d y}{d x}=0
$$

Solve for $\frac{d y}{d x}$.

$$
\begin{aligned}
& x \frac{d y}{d x}+y+\frac{d y}{d x}=0 \\
& \frac{d y}{d x}(x+1)=-y \\
& \frac{d y}{d x}=\frac{-y}{x+1} \\
& \left.\frac{d y}{d x}\right|_{(2,3)}=\frac{-3}{3}=-1
\end{aligned}
$$

