AP Calculus $A B$
Monday, October 22, 2012
12) Give the value of x where the function
a) $4 f^{\prime}(x)=3 x^{2}-18 x+24$
b) $-2 x^{2}-18 x+24=0$
c) 2

$$
x^{2}\left(x-6 x_{4}+8=0=0\right.
$$

10) Determine the concavity of the graph of

$$
\begin{aligned}
& f^{\prime}(x)=3 \cos x+8(\cos x)^{1} \cdot\left((x)=3 \sin x(x)+4(\cos (x))^{2}\right. \\
& f^{\prime}(x)=3 \cos x-4(2 \cos x \sin x) \quad \text { at } x=p i \\
& f^{\prime}(x)=3 \cos x-4 \sin 2 x \\
& f^{\prime \prime}(x)=-3 \sin x-4(\cos 2 x) \cdot 2
\end{aligned}
$$

$$
f^{\prime \prime}(x)=-3 \sin x-8 \cos 2 x
$$

$$
f^{\prime \prime}(\pi)=-3 \sin \pi-8 \cos 2 \pi
$$

$$
f^{\prime \prime}(\pi)=-8
$$

OR

$$
\begin{aligned}
f^{\prime}(x) & =3 \cos x-8 \cos x \sin x \\
f^{\prime}(x) & =\cos x(3-8 \sin x) \\
f^{\prime \prime}(x) & =\cos x(-8 \cos x)+(3-8 \sin x)(-\sin x) \\
f^{\prime \prime}(\pi) & =\cos \pi(-8 \cos \pi)+(3-0)(-\sin \pi) \\
f^{\prime \prime}(\pi) & =-1(-8)(-1)+0 \\
f^{\prime \prime}(\pi) & =-8
\end{aligned}
$$

From our original $s(t)=-16 t^{2}+v_{0} t+s_{0}$, we can calculate the velocity function $v(t)=32+1 V^{0}$ nd the


```
\(s(t)=-4.9 t^{2}+v_{0} t+s_{0} \quad m\)
    \(v(t)=-9.8 t+\nu_{0} \mathrm{~m} / \mathrm{s}\)
    \(a(t)=-9.8 \mathrm{~m} / \mathrm{s}^{2}\)
```

When an object is thrown upward, it is subjected to gravity, We are usually interested how high the particle
reaches and how fast it is going when it impacts the ground or water. Let us analyze what these mean:
When an object reaches its maximum height,
what is its velocity?

So to find the maximum height of an object,	When an object hits the ground, what is its
set $v(t)=0$, solve for t, and find $s(t)$	So, to find the velocity of an object when it
final position?	

hits the ground, set $s(t)=0$, solve for t, and find $v(t)$

Example 4). A projectile is launched vertically upward from ground level with 0
a. Find the velocity and sped
b. How

Find the speed of the
$S(t)=-16 t^{2}+V_{0} t+S_{0}$
$v_{0}=112 \mathrm{ft} / \mathrm{sec}$
$s_{0}=0 \mathrm{ft}$
$s(t)=-16 t^{2}+112 t \rightarrow$ position ign
Find velocity sis peed.
$\nu(t)=-32 t+112$
$v(3)=-32(3)+112$
$\nu(5)=-32.5+112$
$\nu(3)=16 \mathrm{ft} / \mathrm{sec}$
speed $=|v(t)|$ Spend=48ft/sec
$b c v(s)<0$,
speed e 3 sec is $16 \mathrm{fH} / \mathrm{sec}$ the particle is
$V(t)=0 \rightarrow$ max. ht.
$-32 t+112=0$
$32 t=112$
$t=\frac{112}{32} \mathrm{sec}$
$t=3.5 \mathrm{sec}$
$S(3.5)=-16(3.5)^{2}+112(3.5)$
$s(3.5)=196 \mathrm{ft}$ max ht.
To fin d velocity when particle hits gravels,
set $s(t)=0$. Plus that $t \rightarrow v(t)$.
$s(t)=0$
$-16 t^{2}+112 t=0$
$-16 t(t-7)=0$
$t=7$
$d(7)=-32(7)+112$
$v(7)=-112 f+1 \mathrm{sec}$
speed whenpaticle hits
ground e 112 ftlx

