AP Calculus AB Friday, October 19, 2012

Fill in this chart (it's on page 76 in your packet) to describe a particle's motion in each situation.

	a(t) > 0		a(t) < 0		a(t) = 0
$\nu(t) > 0$	Pt /	ACCL.	た1/	Slowly dan	RT/constant spd.
v(t) < 0	ief	/ slowingdon			left const. spf.
v(t) = 0	stopp	ed (chage	ndwed	ens)storrad	

4.
$$s(t) = t + \frac{9}{t+1} + 1$$

 $v(t) = 1 + \frac{(t+1)(5) - 9(t)}{(t+1)^2} + 0$
 $v(t) = 1 + \frac{-9}{(t+1)^2}$
 $Q(t) = 0 + 18(t+1)^{-3} + 1$
 $a(t) = \frac{18}{(t+1)^3}$
Determine when $v(t) = 0$ and where $v(t)$ is positive & negative.
 $v(t) = 1 + \frac{-9}{(t+1)^2} = 0$
 $q(t+1)^2 = 1$
 $t + \frac{-9}{(t+1)^2} = 0$
 $q(t+1)^2 = 0$
 $t + 1 = 3$ $t + 1 = -3$ given be
 $t + 1 = 3$ $t + 1 = -3$ v(t) undly
 $t = 2$ $t = -1$ - signer be
 0 analyze $a(t)$
 $a(t) = \frac{18}{(t+1)^3}$
 $\frac{18}{(t+1)^3} = 0$
 $r_{0}a(t) > 0$.
 $v: \frac{-9}{(t+1)^2} = 0$.
 $t > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$
 $r_{0}a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $t > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $t > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0, a(t) > 0$.
 $v: \frac{-9}{(t+1)^3} = 0$.
 $f > 0$.
 $f > 0, a(t) > 0$.
 $f > 0$.
 f

Example 3) A particle is moving along a horizontal line with position function $s(t) = t^3 - 9t^2 + 24t + 4$. Do an analysis of the particle's direction, acceleration, motion (speeding up or slowing down), and position 2(K)=3+2-18++24 3+2-18++24=0 f²-6++8 = 0 (t-4)(t-2) = 0Ct=4 = += 2 the velocity i a(t) = 6 + -186 + - 18 = 0a(t) = 6t - 18t=3 v(+)=3+2-18++24 =3.a(3)=0.whent a(t)left RIG 'rt/slw otion d.a(t)<0. .: 2,V(t)>0 an the right s slowing a From 2<t<3, V(1)<0 and a(1)<0. ... the particle is moving lift & speeding up From 3 < t < 4, u(t) < 0 and a(t) > 0 ... the particle is moving lift & slowing down. On t>4, V(t) >0 ča(t)>0 ...t posticle is speeding up 2 moving to the n Make a position graph $5(t)=t^{3}-9t^{2}+24t+4$ S(o)=4 S(1) = |-9+24+4=205(2)=8-36+48+4=28 s(3)=27-81+72+4=22 s(4)=64-144+96+4=20 5(5)= 125-225+120+4=24 30

$$s(t) = -16t^{2} + v_{0}t + s_{0}, \tau$$

$$d(t) = -9.8t^{2} + 2.5t + 5.5t^{2}$$
page 79: 1-4 HW