AP Calculus $A B$
Friday, October 19, 2012

Fill in this chart (it's on page 76 in your packet) to describe a particle's motion in each situation.

4. $s(t)=t+\frac{9}{t+1}+1$

$$
\begin{aligned}
& v(t)=1+\frac{(t-1)(0)-9(1)}{(t+1)^{2}}+0 \\
& v(t)=1+\frac{-9}{(t+1)^{2}} \quad \frac{-9}{(t+1)^{2}}=-9(t+1)^{-2} \\
& a(t)=0+18(t+1)^{-3} \cdot 1 \\
& a(t)=\frac{18}{(t+1)^{3}}
\end{aligned}
$$

Determine when $v(t)=0$ and where $v(t)$ is positive \&
$V(t)=1+\frac{-9}{(t+1)^{2}}$
$1+\frac{-9}{(t+1)^{2}}=0$
$\frac{9}{(t+1)^{2}}=1$
$(t+1)^{2}=9$
$t=-1 \rightarrow$ ignore be $\begin{gathered}\text { makes } t \rightarrow 0 \\ \text { denom. } 0 \text { it }\end{gathered}$

analyze $a(t)$
$a(t)=\frac{18}{(t+1)^{3}}$
$\frac{18}{(t+1)^{3}}=0$
for $_{0} a(t)$ never $=0$
$t>0, a(t)>0$

$a:\left.\right|_{1} ^{+} \frac{+}{2} \frac{+}{3}$
$0<t<2: v(t)<0 \therefore$ particle is moving toleft $a(t)>0$ and $v(t)<0$ particle is
slant y down
At $t=2$, the $v(t)=0$
$0 n t>2, V(t)>0$ i $a(t)>0$. particle
Moving to right s speeding up

$$
S(t)=t+\frac{9}{t+1}+1
$$

$S(0)=0+9+1=10$
$S(1)=1+\frac{9}{2}+1=\frac{13}{2}$
$S(2)=2+3+1=6$

From $0<t<2, v(t)>0$ and $a(t)<0$ the particle is moving to the right slowing down. From $2<t<3, v(t)<0$ and $a(t)<0$. \therefore the particle is moving lift: speeding up.
From $3<t<4, v(t)<0$ and $a(t)>0 \therefore$ the particle is moving bf is slowing down.
on $t>4, v(t)>0$! $a(t)>0 \therefore$ the particle is speeding up? mong to the right
Make a position graph

$$
s(t)=t^{3}-9 t^{2}+24 t+4
$$

$$
s(0)=4
$$

$$
S(1)=1-9+24+4=20
$$

$$
s(2)=8-36+48+4=28
$$

$$
\begin{aligned}
& s(2)=8-56 \\
& s(3)=27-81+72+4=22
\end{aligned}
$$

$$
s(4)=64-144+96+4=20
$$

$$
s(5)=125-225+120+4=24
$$

$$
s(t)=-16 t^{2}+v_{0} t+s_{0},
$$

$$
d(t)=-9.8 t^{2}+v_{0} t+5_{0}
$$

page 79: 1-4 HW

