2. $y=(2 \sin x)(\cos x+1)$

$$
\begin{aligned}
& y^{\prime}=(2 \sin x)(-\sin x)+(2 \cos x)(\cos x+1) \\
& y^{\prime}=-2 \sin ^{2} x+2 \cos ^{2} x+2 \cos x \\
& y^{\prime}=2\left(\cos ^{2} x-\sin ^{2} x\right)+2 \cos x \\
& y^{\prime}=2 \cos 2 x+2 \cos x
\end{aligned}
$$

(1) $f^{\prime}(x)=\sin \left(\frac{1}{2} x\right) \cos \left(\frac{1}{2} x\right)$ OR $\frac{\sin x}{2}$

$$
\begin{aligned}
& \sin 2 \theta=2 \sin \theta \cos \theta \\
& \frac{\sin 2 \theta}{2}=\sin \theta \cos \theta
\end{aligned}
$$

(3) $f^{\prime}(x)=\frac{\sec ^{2} x}{3 \sqrt[3]{\tan ^{2} x}}$
(4) $y^{\prime}=\frac{-\cot ^{2} x \csc x+\operatorname{cs}^{2} x+\csc ^{3} x}{\cot ^{2} x}$

(b) For what values of x in the interval $(-10,10)$ does f have a relative maximum? Justify your answer. f has relative maxima $e x=-1 \leqslant x=8$ because $f^{\prime}(x)$ goes from positive to negative at those x-values.
(c) For what values of x is the graph of f concave downward? Justify your answer.

f is concave downward when $f^{\prime}(x)$ is decreasing which is on $(-3,2)$.

