```
APCalculusAB
Wednesday,January8,2014
FindtheMCpartoftheexam(youhavethis).Ihaveplacedyour
answers(includingthecorrectanswers)onyourdesk.Pleasestartto
looktheseover.
WewilltakeparttwooftheexamonFriday.ThiswillconsistofTWO
freeresponsequestions;onecalculatoractiveandonecalculator
inactive.
(5)
    f(x)=\mp@subsup{x}{}{3}-2\mp@subsup{x}{}{2}+8x+4
    g ( x ) = f ^ { - 1 } ( x )
Means g(f(x))=x
        Lets use imp. dif? !? find g'(x)
    g}(f(x))\cdot\mp@subsup{f}{}{\prime}(x)=
    This gives us }\mp@subsup{f}{}{\prime}(x)\mathrm{ . We need g'(x).
    We seed to think of the inverses_in
the other way.
\[
g(f(x))=x \text { then } f(g(x))=x \text {. }
\]
Take derive
\[
f^{\prime}(g(x)) \cdot g^{\prime}(x)=1
\]
\[
\text { Now we can solve for } g^{\prime}(x) \text {. }
\]
\[
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
\]
\[
\text { We ward } g^{\prime}(5) \text {. Pig in } 5 \text { for } x \text {. }
\]
\[
g^{\prime}(5)=\frac{1}{f^{\prime}(g(5))}
\]
\[
\text { If }(a, b) \text { is on } f(x), \underline{(b, a)} \text { is on }
\]
\[
g(x) .
\]
\[
5=x^{3}-2 x^{2}+8 x+4
\]
\[
0=x^{3}-2 x^{2}+8 x-1
\]
\[
\text { Poss. Rational Rests are } \pm 1
\]
\[
1^{3}-2 \cdot 1^{2}+8 \cdot 1-1
\]
\[
1-2+8-1 \neq 0
\]
\[
(-1)^{3}-2(-1)^{2}+8(-1)-1
\]
\[
-1-2-8-1 \neq 0
\]
```

Is there a relationship between the derivative and derivative of the inverse?

$$
\begin{aligned}
& \begin{array}{l}
f(g(x))=x \quad\left\{\begin{array}{l}
g(f(x))=x \\
f^{\prime}(g(x)) \cdot g^{\prime}(x)=1
\end{array}\right\} \begin{array}{l}
g^{\prime}(f(x)) \cdot f^{\prime}(x)=1
\end{array} \\
f(x)=x^{3}-2 x^{2}+8 x+4
\end{array} \\
& f(5)=5^{3}-2 \cdot 5^{2}+8 \cdot 5+4 \\
& =125-50+40+4 \\
& =19 \\
& f^{\prime}(x)=3 x^{2}-4 x+8 \\
& f^{\prime}(5)=3 \cdot 5^{2}-4 \cdot 5+8 \\
& =75-20+8 \\
& =63 \\
& \frac{1}{63}=g^{\prime}(5) \\
& \frac{1}{f^{\prime}(5)}=g^{\prime}(5)
\end{aligned}
$$

(B) $C=2 \pi r$

$$
\begin{aligned}
& \frac{d C}{d t}-2 \pi \cdot \frac{d r}{d t} \quad \text { Given } \frac{d r}{d t}=\frac{1}{2} \frac{m}{s c} \\
& \frac{d C}{d t}=2 \pi \cdot \frac{1}{2} \mathrm{~m} / \mathrm{sec}=\pi \mathrm{m} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{gathered}
f(x)=\tan x \\
f^{\prime}(x)=\sec x \\
\sec ^{2} x=3 x^{2}
\end{gathered}
$$

NORMAL FLOAT AUTO REAL RADIAN MP CART INTERSECT

 \begin{tabular}{c} CALL INTERS

$Y_{2}=3 X^{2}$

\hline
\end{tabular}

$$
f^{\prime}(3)=?
$$

$f^{\prime}(3)$ means slope of f ex $=3$
circle: $(x-h)^{2}+(y-k)^{2}=\Omega^{2}$

$$
(h, k) \rightarrow(2,0) \quad r=2
$$

$(x-2)^{2}+y^{2}=4$

$$
\begin{aligned}
& (x-2)^{2}=4-(x-2)^{2}
\end{aligned}
$$

$$
y=-\sqrt{4-(x-2)^{2}}
$$

$$
f(x)=-1 \cdot\left(4-\left(x^{2}-4 x+4\right)\right)^{1 / 2}
$$

$$
f(x)=-1\left(-x^{2}+4 x\right)^{1 / 2}
$$

$$
\begin{aligned}
& f(x)=-1(-2 x+4)\left(-x^{2}+4 x\right)^{-1 / 2}=\frac{1}{2} \\
& f^{\prime}(x)(-2 x+1
\end{aligned}
$$

$$
f^{\prime}(3)=-\frac{1(-6+4)}{\sqrt{3}} \cdot \frac{1}{2}=\frac{1}{\sqrt{3}}
$$

$$
\begin{aligned}
& \text { accel }=\frac{\Delta v e l o c i t y}{\text { time }} \\
& \begin{aligned}
\alpha(6) \approx \frac{v(8)-v(4)}{8-4} & =\frac{55.9-61.7}{4} \\
& \approx-1.45 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}
\end{aligned}
\end{aligned}
$$

(24) Set $2^{n d}$ deriv $=0$

$$
\begin{aligned}
y^{\prime}= & 3 x^{2}+8 x+5+2 \sin x \\
y^{\prime \prime}= & 6 x+8+2 \cos x \\
& 6 x+8+2 \cos x=0
\end{aligned}
$$

have to solve bypapuig

