AP Calculus $A B$

Monday, January 28, 2013

Please check HW answers with someone Accumulation Function

No school for you Friday

EQN of circle:

$$
\begin{aligned}
& \text { QN of CIRCle: } \\
& (x-h)^{2}+(y-k)^{2}=r^{2}
\end{aligned}
$$

center: (h, k)
Radius = r

$$
\begin{aligned}
& x^{2}+y^{2}=9 \\
& y^{2}=9-x^{2} \\
& y=\sqrt{9-x^{2}} \rightarrow \text { TOP } 1 / 2 \\
& y=-\sqrt{9-x^{2}} \rightarrow \text { bottom } 1 / 2
\end{aligned}
$$

$$
\text { Wev ebeen lookinge } \int_{0}^{3} x d x \rightarrow \underset{\text { Definite }}{\text { litegral }}
$$

$$
f(t)=2
$$

x	0	1	2	3	4	5

Let's graph $\left(x, \int_{0}^{x} f(t) d t\right)$

$$
\left.\begin{array}{l|l}
x & \int_{0}^{x} t d t \\
\hline 0 & 0 / 27 \\
1 & \frac{1}{2} \\
2 & \frac{4}{2} \\
3 & \frac{9}{2} \\
4 & \frac{16}{2} \\
5 & \frac{25}{2}
\end{array}\right\} \frac{x^{2}}{2}
$$

Example 1) Let $F(x)=\int_{0}^{x} f(t) d t$ where the graph of $f(x)$ is below. Remember $f(x)$ is the same thing as $f(t)$. Think of $f(x)$ as the rate of snowfall over a period of time. For instance, at $x=1$, snow is falling

$$
\begin{aligned}
& F(x)=\int_{0}^{x} f(t) d t \\
& F^{\prime}(x)=\frac{d}{d x} \int_{0}^{x} f(t) d t \\
& F^{\prime}(x)=f(x) d x \quad \text { Chain } \\
& \text { Rule }
\end{aligned}
$$

If $F^{\prime}(x)>0$, then $F(x)$ is increasing
$F(x)$ is incur asing on $(0,3) \cup(5,6.5)$
because $F^{\prime}(x)$ is positive on those internals $F(x)$ is decreasing on $(3,5) \cup(6.5,8) b c$ $F^{\prime}(x)<0$ on those inter vals.

