- 1. Write the formula for standard deviation of a sample proportion.
- 2. If you want to cut the standard deviation in half, what must you do to the sample size? Explain.

3. Write the name for each of the following symbols:

Symbols.

(a)
$$\hat{p}$$
 (b) \hat{X} (c) \hat{p} (d) M

(e) $M\hat{p}$ (f) $\hat{\sigma}\hat{p}$ (g) $M\hat{X}$ (h) $\hat{\sigma}\hat{X}$

$$P(1-\hat{p})$$
 \hat{p}

In order to reduce the standard deviation by 1/2, QUADRUPLE the sample size.

(a) à sample propor (b) X sample mean (c) P = population prop (d) $M \rightarrow Pop. mean$ (e) $M_{p} \rightarrow mean of sampling distribution

of <math>\varphi$ (f) Op => Stdder of sampling distribution of p distribution of p (g) My => mean of sampling distr. (g) My of sample means (x) (h) Sy => Stdder of Sampling (h) Sy => Stdder of X Sample mean - M.
Sample Seye Z 10% pop. $5+d dev \rightarrow \frac{0}{\sqrt{n}}$ $O_{\overline{X}} = \frac{\sigma}{\sqrt{\ln}}$ P.448 M=266 $\bigcap P(X > 270)$ $Z = \frac{270 - 266}{100}$

Looking at the table. I see the wea less than 270 is 0.5987. 266 270 Therefore the protability that a tandomly selected pregnant woman would have a pregnancy longer than 270 days is 1-0.5987 or 0.4013. X = 266 because the sample mean is the same as the population mean. 10% P7P > Are there more the

60 pregnant Women? V PNormal distr. V $M_X = 266$ $D_X = 6.532$ P(X > 270) $D_X = 266 = 0.612$ $D_X = 266 = 0.612$

From the table, approx. 0.729/ 15 less than 270, so 0, 2709 15 the probability that the mean is the probability that the mean pregnancy length for the women in the Sample exceeds 270 days.