1. Write the formula for standard deviation of a sample proportion.
2. If you want to cut the standard deviation in half, what must you do to the sample size? Explain.
3. Write the name for each of the following symbols:
(a) $\hat{p}$
(e) $\mu_{\hat{p}}(f) \sigma_{\hat{p}}(g) \mu_{\bar{x}}(h) \sigma_{\bar{x}}$
$\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$
(b) $\bar{x}$
(c) $p$
(d) $\mu$

In, rodento reduce the standard deviation by $1 / 2$, QUADRUPLE the sample size.

(a) $\hat{p}$ sample propotion
(b) X sample mean
(c) $p \rightarrow$ population prop.
(d) $\mu \rightarrow$ popmean
(e) $\mu_{\hat{p}} \rightarrow$ mean of sampling distribution of 分
(f) $\sigma_{\hat{p}} \rightarrow$ std der of sampling distribution of $\hat{p}$
$(g) \mu_{\bar{x}} \rightarrow$ mean of sampling distr. of sample means ( $x$ )
$(h) \delta_{\bar{x}} \rightarrow$ stdder of sampling distr. of $\bar{x}$
sample mean $\rightarrow \mu$ sample seize $\geq 10 \%$ op stddev $\rightarrow \frac{\sigma}{\sqrt{n}}$

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

p. 448

$$
\mu=266 \quad \sigma=16
$$

(1)

$$
\begin{aligned}
& P(x>270) \\
& Z=\frac{270-266}{16}
\end{aligned}
$$

$$
z=0,25
$$

Looking at the Table. I see the mra less than 270 is 0.5987 .


Therefore the probability that a randomly selected pregnant woman would have a pregnancy longer than 270 days is 1-0.5987 or 0.4013.
$\bar{X}=266$ because the sample mean is the same as the population mean.

$$
\sigma_{\bar{x}}=\frac{16}{\sqrt{6}}=6.532 \text { days }
$$

$10 \%$ pop $\rightarrow$ Are there more the
bop regnant women? V
(4) Normal distr.

$$
\begin{aligned}
& \text { (4) Normal distr. } \\
& \mu_{\bar{x}}=266 \quad \sigma_{\bar{x}}=6.532 \\
& P(\bar{x} 7270) \\
& z=\frac{270-266}{6.532}=0.612
\end{aligned}
$$

From the table, approx. 0.7291 is less than 270, so 0,2709 is the probability that the near pregnancy length for the women int sample exceeds 270 days.

