$A P$ Calculus $A B$
Friday, January 11, 2013

Bellwork... Find the antiderivative of each.
5) $\int\left(x^{3}-3\right)^{5} \cdot 3 x^{2} d x$

Let $u=x^{3}-3$

$$
\frac{d u}{d x}=3 x^{2}
$$

$$
d u=3 x^{2} d x
$$

substitute.
$\int u^{5} d u$
$\int_{\substack{\text { integrate } \\ u^{6}}} U^{5}$
8) $\int 20 x^{4} \cdot \sec ^{2}(x+3) d x$

$$
\begin{aligned}
u & =x^{5}+3 \\
\frac{d u}{d x} & =5 x^{4} \\
d u & =5 x^{4} d x
\end{aligned}
$$

$$
\int 4 \cdot 5 x^{4}, \sec ^{2}((5+3) d x
$$

$$
\begin{aligned}
& \int \text { substitute } \\
& 4 \sec ^{2} u \cdot d u \\
& =4 \tan u+C \\
& =4 \tan \left(x^{5}+3\right)+C
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{u^{6}}{6}+C \\
& \Rightarrow \frac{\left(x^{3}-3\right)^{6}}{6}+C
\end{aligned}
$$

$$
\begin{aligned}
& \int 20 x^{4} \sec ^{2}\left(x^{5}+3\right) d x \\
& \int 20 x^{4}\left[\sec \left(x^{5}+3\right)\right]^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{1}{2} x\left(\frac{1}{4} x^{2}-3\right)^{5} d x \\
& \frac{1}{2} x \frac{\left(\frac{1}{4} x^{2}-3\right)^{6}}{\frac{1}{4} \times 6}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sx. } \int \begin{array}{l}
\frac{1}{2} \cdot \int \sqrt[3]{2 x-1} d x \\
u=2 x-1 \\
d u=2 d x \\
\frac{1}{2} \int u^{1 / 3} d u \\
=\frac{1}{2} \cdot \frac{u^{4 / 3}}{4 / 3}+C \\
=\frac{1}{2} \cdot \frac{3}{4}(2 x-1)^{4 / 3}+C \\
=\frac{3(2 x-1)^{4 / 3}}{8}+C
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Yesterday jMchad } \\
& \qquad \begin{aligned}
&(2 x-1)^{1 / 3} d x \\
&=\frac{(2 x-1)^{4 / 3}}{2 \cdot 4 / 3}+C \\
&=\frac{3(2 x-1)^{4 / 3}}{8}+C
\end{aligned}
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{4} \int 4 \operatorname{cac}(4 x+3) \cot \\
u=4 x+3 \\
d u=4 d x
\end{gathered}
$$

$$
=\frac{1}{4} \int \csc u \cot u d u
$$

$$
=-\frac{1}{4} \operatorname{arc} u+C
$$

$$
=-\frac{1}{4} \operatorname{coc}(4 x+3)+c
$$

Sx.

$$
\begin{aligned}
& \int 3 \sin (1-3 x) d x \\
& \text { Let } u=1-3 x \\
& \frac{d u}{d x}=-3 \\
& d u=-3 d x
\end{aligned}
$$

Rewriteproblem

$$
-1 \int[\sin (1-3 x)]=3 d x
$$

substitute

$$
\begin{aligned}
&-1 \int[\sin u] d u \\
&=-1 \cdot-\cos u+C \\
&= \cos u+C \\
&=\cos (1-3 x)+C
\end{aligned}
$$

Creck by finduig dervirative:

$$
\begin{gathered}
f(x)=\cos (1-3 x)+C \\
f^{\prime}(x)=-3(-\sin (1-3 x)) \\
f^{\prime}(x)=3 \sin (1-3 x) \\
\Sigma x . \int(x+2) \sqrt{x-4} d x
\end{gathered}
$$

u-sunstitution - Homework

1. $\int \sqrt{x-2} d x$
2. $\int \sqrt{5 x-1} d x$
3. $\int \sqrt[3]{6 x+1} d x$
4. $\int 5(3-4 x)^{2 / 3} d x$
5. $\int \frac{d x}{(8 x-1)^{3}}$
6. $\int x\left(x^{2}+2\right)^{6} d x$
7. $\int 6 x^{2} \sqrt{3 x^{3}-1} d x$
8. $\int\left(1+\frac{1}{x}\right)^{3}\left(\frac{1}{x^{2}}\right) d x$
9. $\int x^{1 / 3}\left(x^{4 / 3}+9\right)^{8} d x$
10. $\frac{2}{3} \int \sqrt{4-\frac{3}{5}} x d x$
11. $\int(3 x+15) \sqrt{x^{2}+10 x+4} d x$
12. $\int(x+2) \sqrt{x-2} d x$
13. $\int \frac{x^{2}}{\sqrt{x-4}} d x$
14. $\int \sin 5 x d x$
15. $\int \frac{1}{3} \sec ^{2} 8 x d x$
16. $\int \cos \frac{x}{2} d x$
17. $\int \sin 4 x \cos 4 x d x$
18. $\int \cos ^{3} x \sin x d x$
19. $\int \tan x \sec ^{2} x d x$
20. $\int \sqrt{\cos 6 x} \sin 6 x d x$
21. $\int \frac{\sin x}{(4-\cos x)^{3}} d x$
