$A P$ Calculus $A B$
Thursday, January 10, 2013
Bellwork...Find the derivative of each.
(1) $f(x)=\frac{(3 x-2)^{5}}{15}$
(2) $g(x)=\frac{2(5 x-2)^{3 / 2}}{15}$
(3) $h(x)=\frac{2}{5}(6 x-1)^{1 / 3}$
(4) $y=\frac{1}{3}\left(x^{2}-2\right)^{3 / 2}$
(5) $f(x)=\frac{1}{4} \sin ^{4} x$
(C) What do all of there proberns hove in common? How do you thik thisapperis to inty yation?
(1) $(3 x-2)^{4}$
(2) $(5 x-2)^{1 / 2}$
(3) $4(6 x-1)^{2 / 3}$
(4) $x \sqrt{x^{2}-2}$

$$
\left\{\begin{aligned}
& \int(3 x-2)^{4} d x \\
& \frac{(3 x-2)^{5}}{5}+ \\
& \frac{(3 x-2)^{5}}{15}+c
\end{aligned}\right.
$$

(5) $\sin ^{3} x \cos x$

$$
\text { (3) } \begin{aligned}
& \int 4(6 x-1)^{2 / 3} d x \\
& =\frac{\frac{4(6 x-1)^{5 / 3}}{5 / 3}}{6}+C \\
& =\frac{1}{6} \cdot \frac{12(6 x-1)^{5 / 3}}{5}+C \\
& =\frac{2(6 x-1)^{5 / 3}}{5}+C
\end{aligned}
$$

$$
\text { (4) } \begin{aligned}
& \int x \sqrt{x^{2}-2} d x \\
= & \int x\left(x^{2}-2\right)^{1 / 2} d x \\
= & \frac{\frac{2}{3} x\left(x^{2}-2\right)^{3 / 2}}{2 x}+C \\
= & \frac{1}{3}\left(x^{2}-2\right)^{3 / 2}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (5) } \int \sin ^{3} x \cos x d x \\
& =\int(\sin x)^{3} \cos x d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sx. } \int x\left(x^{2}-1\right)^{5} d x \\
& =\frac{x\left(x^{2}-1\right)^{6}}{6 \cdot 2 x}+C \\
& =\frac{\left(x^{2}-1\right)^{6}}{12}+C \\
& \sum x . \int \frac{x}{\sqrt[3]{2 x^{2}-1}} d x \\
& =\int x\left(2 x^{2}-1\right)^{-1 / 3} d x \\
& = \\
& =\frac{x\left(2 x^{2}-1\right)^{2 / 3}}{4 x \cdot 2 / 3}+C \\
& = \\
& \frac{3}{8} \cdot\left(2 x^{2}-1\right)^{2 / 3}+C \\
& \text { Ex. } \int 3 \sin (1-3 x) d x \\
& \\
& \sum x . \int(x+2) \sqrt{x-4} d x
\end{aligned}
$$

