Thursday, January 10, 2013 Bellwork...Find the derivative of each. $\bigcirc f(x) = \frac{(3x+2)^5}{15} \qquad \bigcirc g(x) = \frac{2(5x+2)^5}{15}$ (3) $h(x) = \frac{2}{5}(6x-1)^{5/3}$ (4) $y = \frac{1}{3}(x^2-2)^3$ 5 f(x)= 4 sin⁴x © What do all of these problems have in common? How do you thick this applies to integration? $\begin{array}{c} applies to may \\ (3x-2)^{4} \\ (3x-2)^{1/2} \\$ (1) X/X-2 $(3) \int 4(6x-1)^{2/3} dx$ $= \frac{\frac{4(6\kappa - 1)^{5/3}}{5/3}}{5/3} + C$ $\frac{1}{6} \cdot \frac{12(6x-1)^{5/3}}{5} + C$ $= \frac{2(6x-1)^{5/5}}{5} + C$ $(3) \int X \sqrt{x^{2}-2} dx$ $= \int X (x^{2}-2)^{1/2} dx$ $\frac{\frac{2}{3} \times (x^{2}-2)^{3/2}}{2}$ + $= \frac{1}{5} (x^{2} - z)^{3/2} + C$ $(5) \int \sin^{3} x \cos x \, dx$ $= \int (\sin x)^{3} \cos x \, dx$

 ξ_{X} . $\int \chi(\chi^2 - 1)^5 dx$ $= x \left(\chi^2 - l \right)^6 + C$ $\sum_{x} \frac{\chi}{\sqrt{2x^2-1}} dx$ $= \int \left(\left(2x^{2} - 1 \right)^{-1/3} dx \right)$ $= \frac{\chi (2\chi^{2}-1)^{2/3}}{4\chi \cdot 2/2} + C$ $=\frac{3}{8} \cdot (2x^{2}-1)^{2/3} + C$ Ex. Spin(1-3x) dx Σ_{X} . $\int (\chi + 2) \sqrt{\chi - 4} d\chi$