8. Maria designs a game for the school's carnival. Students will throw a dart at the circles shown. If the dart lands in the shaded area, the student wins a prize. The radius of the larger circle is 12 inches and the radius of the smaller circle is 6 inches. What is the probability that a student will win a prize? Show your work or provide an explanation.

area of shaded region $=\pi \cdot 12^{2}-\pi \cdot 6^{2}$

$$
\begin{aligned}
& =144 \pi-36 \pi \\
& =108 \pi
\end{aligned}
$$

$P($ sladediregion $)=\frac{108 \pi}{144 \pi}$

$$
=0.75
$$



$$
\begin{aligned}
& 1+1 \\
& 1+2 \\
& 1+3 \\
& 1+4
\end{aligned}
$$

$$
5
$$

$$
\begin{aligned}
& 2+5 \\
& 1+6
\end{aligned}
$$

$$
1+7
$$

prob (Tor 8sum)

$$
\begin{aligned}
& 3-4 \\
& 3+5
\end{aligned}
$$

$$
\begin{gathered}
\text { Total } \# \text { oforatame } \\
3>824
\end{gathered}
$$

$$
38=24
$$

$$
\frac{6}{24}=\frac{1}{4}
$$



$$
\frac{\tan 65}{1}=\frac{x}{5}
$$

$$
\cos x=\frac{10}{21}
$$

$$
\begin{aligned}
& x=5 \tan 65^{\circ} \quad x=61.5^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\text {aft }}^{55^{\circ}} 12 \quad \frac{\sin 55^{\circ}}{1}=\frac{12}{x} \\
& x=\frac{12}{\sin 55^{\circ}} \\
& x=14.6
\end{aligned}
$$

